Mannose-binding lectin (MBL) is present in human serum and plays an important role in innate immunity by binding to carbohydrate on micro-organisms. Whereas the gp120/gp41 of human immunodeficiency virus type 1 (HIV-1) contains numerous -linked glycosylation sites and many of these sites contain high-mannose glycans which could interact with MBL, the interaction between MBL and primary isolates (PI) of HIV-1 has not been studied. To determine if PI of HIV bind to MBL, a virus capture assay was developed in which virus was incubated in MBL-coated microtitre wells followed by detection of bound virus with an ELISA for p24 antigen. The X4 HIV-1 T cell line-adapted strain and PI of HIV (R5 and X4) bound to MBL. Binding of virus to MBL was via the carbohydrate-recognition domain of MBL since binding did not occur in the absence of Ca and was blocked by preincubation of MBL-coated wells with soluble mannan. The interaction of virus with MBL-coated wells was also inhibited by preincubation of virus with soluble MBL, indicating that both immobilized and soluble forms of MBL bound to HIV. Although host cell glycoproteins are incorporated into the membrane of HIV, binding of virus to immobilized MBL required expression of gp120/gp41 on virus particles, suggesting the presence of either an unusually high carbohydrate density and/or a unique carbohydrate structure on gp120/gp41 that is the target of MBL. This study shows that PI of HIV bind to MBL and suggests that MBL can selectively interact with HIV via carbohydrate structures on gp120/gp41.


Article metrics loading...

Loading full text...

Full text loading...



  1. Arthur, L. O., Bess, J. W., Sowder, R. C., Benveniste, R. E., Mann, D. L., Chermann, J. C. & Henderson, L. E. (1992). Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science 258, 1935-1938.[CrossRef] [Google Scholar]
  2. Burton, D. R., Pyati, J., Koduri, R., Sharp, S. J., Thronton, G. B., Parren, P. W., Sawyer, L. S., Hendry, R. M., Dunlop, N., Nara, P. L., lamacchia, M., Garratty, E., Stiehm, E. R., Bryson, Y. J., Cao, Y., Moore, J. P., Ho, D. D. & Barbas, C. F. (1994). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024-1027.[CrossRef] [Google Scholar]
  3. Ezekowitz, R. A., Day, L. E. & Herman, G. A. (1988). A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. Journal of Experimental Medicine 167, 1034-1046.[CrossRef] [Google Scholar]
  4. Ezekowitz, R. A. B., Kuhlman, M., Groopman, J. E. & Byrn, R. A. (1989). A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. Journal of Experimental Medicine 169, 185-196.[CrossRef] [Google Scholar]
  5. Fenouillet, E., Gluckman, J. C. & Jones, I. M. (1994). Functions of HIV envelope glycans. Trends in Biochemical Sciences 19, 65-70.[CrossRef] [Google Scholar]
  6. Fraser, I. P., Koziel, H. & Ezekowitz, R. A. (1998). The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Seminars in Immunology 10, 363-372.[CrossRef] [Google Scholar]
  7. Fukuda, M. (1985). Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochimica Biophysica Acta 780, 119-150. [Google Scholar]
  8. Galvan, M., Murali-Krishna, K., Ming, L. L., Baum, L. & Ahmed, R. (1998). Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector/memory CD8+ T cells from naive cells. Journal of Immunology 161, 641-648. [Google Scholar]
  9. Garred, P., Madsen, H. O., Balslev, U., Hofmann, B., Pedersen, C., Gerstoft, J. & Svejgaard, A. (1997). Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet 349, 236-240.[CrossRef] [Google Scholar]
  10. Gendelman, H. E., Orenstein, J. M., Martin, M. A., Ferrua, C., Mitra, R., Phipps, T., Wahl, L. A., Lane, H. C., Fauci, A. S., Burke, D. S., Skillman, D. & Meltzer, M. S. (1988). Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-related monocytes. Journal of Experimental Medicine 167, 1428-1441.[CrossRef] [Google Scholar]
  11. Geyer, H., Holschbach, C., Hunsmann, G. & Schneider, J. (1988). Carbohydrates of human immunodeficiency virus. Journal of Biological Chemistry 263, 11760-11767. [Google Scholar]
  12. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648-659.[CrossRef] [Google Scholar]
  13. Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N. & Gregory, T. J. (1990). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. Biological Chemistry 265, 10373-10382. [Google Scholar]
  14. Lipscombe, R. J., Sumiya, M., Summerfield, J. A. & Turner, M. W. (1995). Distinct physicochemical characteristics of human mannose binding protein expressed by individuals of differing genotype. Immunology 85, 660-667. [Google Scholar]
  15. Lu, J. H., Thiel, S., Wiedemann, H., Timpl, R. & Reid, K. B. (1990). Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. Journal of Immunology 144, 2287-2294. [Google Scholar]
  16. Maas, J., de Roda Husman, A. M., Brouwer, M., Krol, A., Coutinho, R., Keet, I., van Leeuwen, R. & Schuitemaker, H. (1998). Presence of the variant mannose binding lectin alleles associated with slower progression to AIDS. Amsterdam Cohort Study. AIDS 12, 2275-2280.[CrossRef] [Google Scholar]
  17. Mizouchi, T., Matthews, T. J., Kato, M., Hamako, J., Titani, K., Solomon, J. & Feizi, T. (1990). Diversity of oligosaccharide structures on the envelope of glycoprotein gp120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Journal of Biological Chemistry 265, 8519-8524. [Google Scholar]
  18. Moore, J. P. & Ho, D. D. (1995). HIV-1 neutralization: the consequences of viral adaptation to growth on transformed T cells. AIDS 9, S117-S136. [Google Scholar]
  19. Nielsen, S. L., Andersen, P. L., Koch, C., Jensenius, J. C. & Thiel, S. (1995). The level of the serum opsonin, mannan-binding protein in HIV-1 antibody-positive patients. Clinical and Experimental Immunology 100, 219-222. [Google Scholar]
  20. Nyambi, P. N., Gorny, M. K., Bastiani, L., van der Groen, G., Williams, C. & Zolla-Pazner, S. (1998). Mapping of epitopes exposed on intact human immunodeficiency virus type 1 (HIV-1) virions: a new strategy for studying the immunologic relatedness of HIV-1. Journal of Virology 72, 9384-9391. [Google Scholar]
  21. Orentas, R. J. & Hildreth, J. E. (1993). Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Research and Human Retroviruses 9, 1157-1165.[CrossRef] [Google Scholar]
  22. Pastinen, T., Liitsola, K., Niini, P., Salminen, M. & Syvanen, A. C. (1998). Contribution of the CCR5 and MBL genes to susceptibility to HIV type 1 infection in the Finnish population. AIDS Research and Human Retroviruses 14, 695-698.[CrossRef] [Google Scholar]
  23. Reitter, J. N., Means, R. E. & Desrosiers, R. C. (1998). A role for carbohydrates in immune evasion in AIDS. Nature Medicine 4, 679-684.[CrossRef] [Google Scholar]
  24. Saarloos, M. N., Sullivan, B. L., Czerniewski, M. A., Parameswar, K. D. & Spear, G. T. (1997). Detection of HLA-DR associated with monocytotropic, primary, and plasma isolates of human immunodeficiency virus type 1. Journal of Virology 71, 1640-1643. [Google Scholar]
  25. Saifuddin, M., Parker, C. J., Peeples, M. E., Gorny, M. K., Zolla-Pazner, S., Ghassemi, M., Rooney, I. A., Atkinson, J. P. & Spear, G. T. (1995). Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. Journal of Experimental Medicine 182, 501-509.[CrossRef] [Google Scholar]
  26. Saifuddin, M., Hedayati, T., Atkinson, J. P., Holguin, M. H., Parker, C. J. & Spear, G. T. (1997). Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. Journal of General Virology 78, 1907-1911. [Google Scholar]
  27. Suankratay, C., Zhang, X. H., Zhang, Y., Lint, T. F. & Gewurz, H. (1998). Requirement for the alternative pathway as well as C4 and C2 in complement-dependent hemolysis via the lectin pathway. Journal of Immunology 160, 3006-3013. [Google Scholar]
  28. Takemfan, D. M., Sullivan, B. L., Sha, B. E. & Spear, G. T. (1998). Mechanisms of resistance of HIV-1 primary isolates to complement-mediated lysis. Virology 246, 370-378.[CrossRef] [Google Scholar]
  29. Thiel, S., Holmskov, U., Hviid, L., Laursen, S. B. & Jensenius, J. C. (1992). The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clinical and Experimental Immunology 90, 31-35. [Google Scholar]
  30. Turner, M. W. (1998). Mannose-binding lectin (MBL) in health and disease (review). Immunobiology 199, 327-339.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error