To define further the accessory role(s) of the CD46 (membrane cofactor protein) short consensus repeat (SCR) III and IV domains in the interaction of CD46 with measles virus (MV), chimeric proteins were generated by substituting domains from the structurally related protein decay accelerating factor (DAF, CD55): ×3DAF (exchange of CD46 SCR III) and ×4DAF (exchange of SCR IV). Transfected CHO cell lines that stably expressed these chimeric proteins were compared for MV binding and infection. Compared with wild-type CD46 (I–II–III–IV), a significant decrease in MV binding was observed with ×4DAF. Despite this limited binding, these cells were still capable of supporting virus entry. In a quantitative fusion assay, no significant differences in fusion were observed as a result of the exchange of either CD46 SCR III or IV. However, the down-regulation of cell surface CD46 typically observed following MV infection was abolished with ×4DAF, as was the redistribution of CD46 on the cell surface. Thus, CD46 SCR IV appears to be required for optimal virus binding and receptor down-regulation, although importantly, in spite of these functional limitations, ×4DAF can still be used for MV entry.


Article metrics loading...

Loading full text...

Full text loading...



  1. Alkhatib, G., Broder, C. C. & Berger, E. A. (1996). Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. Journal of Virology 70, 5487-5494. [Google Scholar]
  2. Bartz, R., Brinckmann, U., Dunster, L. M., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. (1996). Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224, 334-337.[CrossRef] [Google Scholar]
  3. Buchholz, C. J., Koller, D., Devaux, P., Mumenthaler, C., Schneider-Schaulies, J., Braun, W., Gerlier, D. & Cattaneo, R. (1997). Mapping of the primary binding site of measles virus to its receptor CD46. Journal of Biological Chemistry 272, 22072-22079.[CrossRef] [Google Scholar]
  4. Casasnovas, J. M., Larvie, M. & Stehle, T. (1999). Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO Journal 18, 2911-2922.[CrossRef] [Google Scholar]
  5. Christiansen, D., Milland, J., Thorley, B. R., McKenzie, I. F. C., Mottram, P. L., Purcell, L. J. & Loveland, B. E. (1996). Engineering of recombinant soluble CD46: an inhibitor of complement activation. Immunology 87, 348-354. [Google Scholar]
  6. Devaux, P., Loveland, B., Christiansen, D., Milland, J. & Gerlier, D. (1996). Interactions between the ectodomains of haemagglutinin and CD46 as a primary step in measles virus entry. Journal of General Virology 77, 1477-1481.[CrossRef] [Google Scholar]
  7. Devaux, P., Buchholz, C. J., Schneider, U., Escoffier, C., Catteneo, R. & Gerlier, D. (1997). CD46 short consensus repeats III and IV enhance measles virus binding but impair soluble haemagglutinin binding. Journal of Virology 71, 4157-4160. [Google Scholar]
  8. Devaux, P., Christiansen, D., Fontaine, M. & Gerlier, D. (1999). Control of C3b and C5b deposition by CD46 (membrane cofactor protein) after alternative but not classical complement activation. European Journal of Immunology 29, 815-822.[CrossRef] [Google Scholar]
  9. Firsching, R., Buchholz, C. J., Schneider, U., Cattaneo, R., ter Meulen, V. & Schneider-Schaulies, J. (1999). Measles virus spread by cell–cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. Journal of Virology 73, 5265-5273. [Google Scholar]
  10. Gerlier, D., Loveland, B., Varior-Krishnan, G., Thorley, B., McKenzie, I. F. C. & Rabourdin-Combe, C. (1994). Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. Journal of General Virology 75, 2163-2171.[CrossRef] [Google Scholar]
  11. Hirano, A., Yant, S., Iwata, K., Korte-Sarfaty, J., Seya, T., Nagasawa, S. & Wong, T. C. (1996). Human cell receptor CD46 is downregulated through recognition of a membrane-proximal region of the cytoplasmic domain in persistent measles virus infection. Journal of Virology 70, 6929-6936. [Google Scholar]
  12. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. (1989). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61-68.[CrossRef] [Google Scholar]
  13. Hsu, E. C., Dorig, R. E., Sarangi, F., Marcil, A., Iorio, C. & Richardson, C. D. (1997). Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. Journal of Virology 71, 6144-6154. [Google Scholar]
  14. Iwata, K., Seya, T., Yanagi, Y., Pesando, J. M., Johnson, P. M., Okabe, M., Ueda, S., Ariga, H. & Nagasawa, S. (1995). Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. Journal of Biological Chemistry 270, 15148-15152.[CrossRef] [Google Scholar]
  15. Krantic, S., Gimenez, C. & Rabourdin-Combe, C. (1995). Cell-to-cell contact via measles virus haemagglutinin–CD46 interaction triggers CD46 downregulation. Journal of General Virology 76, 2793-2800.[CrossRef] [Google Scholar]
  16. Lecouturier, V., Fayolle, J., Caballero, M., Carabana, J., Celma, M. L., Fernandez-Munoz, R., Wild, T. F. & Buckland, R. (1996). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70, 4200-4204. [Google Scholar]
  17. Liszewski, M. K., Post, T. W. & Atkinson, J. P. (1991). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annual Review of Immunology 9, 431-455.[CrossRef] [Google Scholar]
  18. Maisner, A., Alvarez, J., Liszewski, M. K., Atkinson, D. J., Atkinson, J. P. & Herrler, G. (1996). The N-glycan of the SCR 2 region is essential for membrane cofactor protein (CD46) to function as a measles virus receptor. Journal of Virology 70, 4973-4977. [Google Scholar]
  19. Malvoisin, E. & Wild, T. F. (1993). Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. Journal of General Virology 74, 2365-2372.[CrossRef] [Google Scholar]
  20. Manchester, M., Liszewski, M. K., Atkinson, J. P. & Oldstone, M. B. (1994). Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proceedings of the National Academy of Sciences, USA 91, 2161-2165.[CrossRef] [Google Scholar]
  21. Manchester, M., Valsamakis, A., Kaufman, R., Liszewski, M. K., Alvarez, J., Atkinson, J. P., Lublin, D. M. & Oldstone, M. B. A. (1995). Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proceedings of the National Academy of Sciences, USA 92, 2303-2307.[CrossRef] [Google Scholar]
  22. Manchester, M., Gairin, J. E., Patterson, J. B., Alvarez, J., Liszewski, M. K., Eto, D. S., Atkinson, J. P. & Oldstone, M. B. A. (1997). Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR1–2. Virology 233, 174-184.[CrossRef] [Google Scholar]
  23. Mumenthaler, C., Schneider, U., Buchholz, C. J., Koller, D., Braun, W. & Catteneo, R. (1997). A 3D model for the measles virus receptor CD46 based on homology modeling, Monte Carlo simulations, and hemagglutinin binding studies. Protein Science 6, 588-597. [Google Scholar]
  24. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. (1993a). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67, 6025-6032. [Google Scholar]
  25. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. (1993b). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. Journal of General Virology 74, 1073-1079.[CrossRef] [Google Scholar]
  26. Nussbaum, O., Broder, C. C. & Berger, E. A. (1994). Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. Journal of Virology 68, 5411-5422. [Google Scholar]
  27. Patterson, J. B., Scheiflinger, F., Manchester, M., Yilma, T. & Oldstone, M. B. A. (1999). Structural and functional studies of the measles virus hemagglutinin: identification of a novel site required for CD46 interaction. Virology 256, 142-151.[CrossRef] [Google Scholar]
  28. Richardson, C. D. & Choppin, P. W. (1983). Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. Virology 131, 518-532.[CrossRef] [Google Scholar]
  29. Sakihama, T., Smolyar, A. & Reinherz, E. L. (1995). Oligomerization of CD4 is required for stable binding to class II major histocompatibility complex proteins but not for interaction with human immunodeficiency virus gp120. Proceedings of the National Academy of Sciences, USA 92, 6444-6448.[CrossRef] [Google Scholar]
  30. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & ter Meulen, V. (1995a). Differential downregulation of CD46 by measles virus strains. Journal of Virology 69, 7257-7259. [Google Scholar]
  31. Schneider-Schaulies, J., Schnorr, J. J., Brinckmann, U., Dunster, L. M., Baczko, K., Liebert, U. G., Schneider-Schaulies, S. & ter Meulen, V. (1995b). Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proceedings of the National Academy of Sciences, USA 92, 3943-3947.[CrossRef] [Google Scholar]
  32. Schneider-Schaulies, J., Schnorr, J. J., Schlender, J., Dunster, L. M., Schneider-Schaulies, S. & ter Meulen, V. (1996). Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. Journal of Virology 70, 255-263. [Google Scholar]
  33. Schnorr, J. J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. (1995). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. European Journal of Immunology 25, 976-984.[CrossRef] [Google Scholar]
  34. Seya, T., Turner, J. R. & Atkinson, J. P. (1986). Purification and characterization of a membrane protein (gp45–70) that is a cofactor for cleavage of C3b and C4b. Journal of Experimental Medicine 163, 837-855.[CrossRef] [Google Scholar]
  35. Yant, S., Hirano, A. & Wong, T. C. (1997). Identification of a cytoplasmic Tyr-X-X-Leu motif essential for down regulation of the human cell receptor CD46 in persistent measles virus infection. Journal of Virology 71, 766-770. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error