Coxsackievirus A21 (CAV-21) employs a cell receptor complex of decay-accelerating factor (DAF) and intercellular adhesion molecule-1 (ICAM-1) for cell infectivity. In this study, the nature of potential extra- and/or intracellular interactions between DAF and ICAM-1 involved in picornaviral cell entry was investigated. Firstly, it was shown that intracellular interplay between DAF and ICAM-1 is not required for CAV-21 infection, as CAV-21 lytic infection mediated via the DAF/ICAM-1 receptor complex is not inhibited by replacement of the transmembrane and cytoplasmic domains of ICAM-1 with those from an unrelated cell surface molecule, CD36. By immunoprecipitation, chemical cross-linking and picornaviral binding assays, the existence of a close spatial association between DAF and ICAM-1 on the surface of ICAM-1-transfected RD cells was confirmed. Furthermore, it was shown that potential extracellular DAF/ICAM-1 interactions are likely to occur in an area on or proximal to DAF SCR3 and may influence the route of CAV-21 cell entry.


Article metrics loading...

Loading full text...

Full text loading...



  1. Anderson, H. A., Chen, Y. & Norkin, L. C. (1996). Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell 7, 1825-1834.[CrossRef] [Google Scholar]
  2. Arita, M., Koike, S., Aoki, J., Horie, H. & Nomoto, A. (1998). Interaction of poliovirus with its purified receptor and conformational alteration in the virion. Journal of Virology 72, 3578-3586. [Google Scholar]
  3. Bergelson, J. M., Chan, B. M., Solomon, K. R., St John, J. N. & Finberg, R. W. (1994). Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proceedings of the National Academy of Sciences, USA 91, 6245-6249.[CrossRef] [Google Scholar]
  4. Bergelson, J. M., Mohanty, J. G., Crowell, R. L., St John, N. F., Lublin, D. M. & Finberg, R. W. (1995). Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). Journal of Virology 69, 1903-1906. [Google Scholar]
  5. Boyd, A. W., Wawryk, S. O., Burns, G. F. & Fecondo, J. V. (1988). Intercellular adhesion molecule-1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proceedings of the National Academy of Sciences, USA 85, 3095-3099.[CrossRef] [Google Scholar]
  6. Casasnovas, J. M. & Springer, T. M. (1994). Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediator in which ICAM-1 is bound and RNA is released. Journal of Virology 68, 5882-5889. [Google Scholar]
  7. Chirathaworn, C., Tibbetts, S. A., Chan, M. A. & Benedict, S. H. (1995). Cross-linking of ICAM-1 on T cells induces transient tyrosine phosphorylation and inactivation of cdc2 kinase. Journal of Immunology 155, 5479-5482. [Google Scholar]
  8. Clarkson, N. A., Kaufman, R., Lublin, D. M., Ward, T., Pipkin, P. A., Minor, P. D., Evans, D. J. & Almond, J. W. (1995). Characterisation of the echovirus 7 receptor: domains of CD55 critical for virus binding. Journal of Virology 69, 5497-5501. [Google Scholar]
  9. De Tulleo, L. & Kirchhausen, T. (1998). The clathrin endocytic pathway in viral infection. EMBO Journal 17, 4585-4593.[CrossRef] [Google Scholar]
  10. Fricks, C. E. & Hogle, J. M. (1990). Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. Journal of Virology 64, 1934-1945. [Google Scholar]
  11. Greenwalt, D. E., Lipsky, R. H., Ockenhouse, C. F., Ikeda, H., Tandon, N. N. & Jamieson, G. A. (1992). Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 5, 1105-1115. [Google Scholar]
  12. Grunert, H. P., Wolf, K. U., Langner, K. D., Sawitzky, D., Habermehl, K. O. & Zeichhardt, H. (1997). Internalization of human rhinovirus 14 into HeLa and ICAM-1-transfected BHK cells. Medical Microbiology and Immunology 186, 1-9.[CrossRef] [Google Scholar]
  13. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. (1998). Dynamin-mediated internalization of caveolae. Journal of Cell Biology 141, 85-99.[CrossRef] [Google Scholar]
  14. Kinoshita, T., Medof, M. E., Silber, R. & Nussenzweig, V. (1985). Distribution of decay accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. Journal of Experimental Medicine 162, 75.[CrossRef] [Google Scholar]
  15. Kuttner-Kondo, L., Medof, M. E., Brodbeck, W. & Shoham, M. (1996). Molecular modelling and mechanism of action of human decay-accelerating factor. Protein Engineering 12, 1143-1149. [Google Scholar]
  16. Lonberg-Holm, K., Crowell, R. L. & Philipson, L. (1976). Unrelated animal viruses share receptors. Nature 259, 679-681.[CrossRef] [Google Scholar]
  17. Mayor, S., Rothberg, K. G. & Maxfield, F. R. (1994). Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948-1951.[CrossRef] [Google Scholar]
  18. Mazurov, A. V., Vinogradov, D. V., Vlasik, T. N., Burns, G. F. & Berndt, M. C. (1992). Heterogeneity of platelet Fc-receptor-dependent response to activating monoclonal antibodies. Platelets 3, 181-188.[CrossRef] [Google Scholar]
  19. Mizushima, S. & Nagata, S. (1990). pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Research 18, 5322.[CrossRef] [Google Scholar]
  20. Rothberg, K. G., Ying, Y. S., Kolhouse, J. F., Kamen, B. A. & Anderson, R. G. (1990). The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. Journal of Cell Biology 110, 637-649.[CrossRef] [Google Scholar]
  21. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R. & Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682.[CrossRef] [Google Scholar]
  22. Rothlein, R., Kishimoto, T. K. & Mainolfi, E. (1994). Cross-linking of ICAM-1 induces co-signaling of an oxidative burst from mononuclear leukocytes. Journal of Immunology 152, 2488-2495. [Google Scholar]
  23. Sargiacomo, M., Sudol, M., Tang, Z. & Lisanti, M. P. (1993). Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. Journal of Cell Biology 122, 789-807.[CrossRef] [Google Scholar]
  24. Shafren, D. R. (1998). Viral cell entry induced by crosslinked decay-accelerating factor. Journal of Virology 72, 9407-9412. [Google Scholar]
  25. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burns, G. F. & Barry, R. D. (1995). Coxsackieviruses B1, B3 and B5 use decay-accelerating factor as a receptor for cell attachment. Journal of Virology 69, 3873-3877. [Google Scholar]
  26. Shafren, D. R., Dorahy, D. J., Greive, S. J., Burns, G. F. & Barry, R. D. (1997a). Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. Journal of Virology 71, 785-789. [Google Scholar]
  27. Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F. & Barry, R. D. (1997b). Coxsackievirus A21 binds to decay accelerating factor but requires intercellular adhesion molecule-1 for cell entry. Journal of Virology 71, 4736-4743. [Google Scholar]
  28. Shafren, D. R., Dorahy, D. J., Thorne, R. F., Kinoshita, T., Barry, R. D. & Burns, G. F. (1998). Antibody binding to individual short consensus repeats of decay-accelerating factor enhance enterovirus binding and cell infection. Journal of Immunology 160, 2318-2323. [Google Scholar]
  29. Shenoy-Scaria, A. M., Kwong, J., Fujita, T., Olszowy, M. W., Shaw, A. S. & Lublin, D. M. (1992). Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. Journal of Immunology 149, 3535-3541. [Google Scholar]
  30. Staunton, D. E., Gaur, A., Chan, P. Y. & Springer, T. A. (1992). Internalization of a major group human rhinovirus does not require cytoplasmic or transmembrane domains of ICAM-1. Journal of Immunology 148, 3271-3274. [Google Scholar]
  31. Wang, X. & Bergelson, J. M. (1999). Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. Journal of Virology 73, 2559-2562. [Google Scholar]
  32. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D. & Almond, J. W. (1994). Decay accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13, 5070-5074. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error