P37 (F13L gene product), the most abundant protein in the envelope of the extracellular virus form of the prototype poxvirus, vaccinia virus (VV), is a crucial player in the process leading to acquisition of the envelope, virus egress and transmission. We have cloned and sequenced a swinepox virus (SPV) gene homologous to VV F13L. The SPV gene product, termed P42, was 54% identical to P37, the VV F13L gene product, and, among the poxviruses, was most similar (73% identity) to the myxoma virus homologue. The SPV P42 gene contained late transcription signals and was expressed only at late times during infection. The protein was palmitylated, and showed an intracellular distribution similar to that of VV P37, both by immunofluorescence and by subcellular fractionation. As with VV P37, SPV P42 was incorporated in extracellular enveloped SPV particles, but was absent from the intracellular mature virus form. To check the ability of SPV P42 to function in the context of VV infection, we inserted the SPV gene into a VV deficient in P37, which is severely blocked in virus envelopment and cell-to-cell transmission. Despite correct expression of SPV P42, the resulting recombinant VV showed no rescue of extracellular virus formation or cell-to-cell virus spread. The lack of function of SPV P42 in the VV genetic background suggests that specific interactions between SPV P42 or VV P37 and other viral proteins is required to drive the envelopment process.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baek, S. H., Kwak, J. Y., Lee, S. H., Lee, T., Ryu, S. H., Uhlinger, D. J. & Lambeth, J. D. (1997). Lipase activities of p37, the major envelope protein of vaccinia virus. Journal of Biological Chemistry 272, 32042-32049.[CrossRef] [Google Scholar]
  2. Barcena, J. & Blasco, R. (1998). Recombinant swinepox virus expressing beta-galactosidase: investigation of viral host range and gene expression levels in cell culture. Virology 243, 396-405.[CrossRef] [Google Scholar]
  3. Blake, N. W., Porter, C. D. & Archard, L. C. (1991). Characterization of a molluscum contagiosum virus homolog of the vaccinia virus p37K major envelope antigen. Journal of Virology 65, 3583-3589. [Google Scholar]
  4. Blasco, R. (1995). Evolution of poxviruses and African swine fever virus. In Molecular Basis of Virus Evolution, pp. 255-269. Edited by A. J. Gibbs, C. H. Calisher & F. Garcı́a-Arenal. Cambridge: Cambridge University Press.
  5. Blasco, R. & Doms, R. W. (1993). Membrane fusion activity of vaccinia virus. In Viral Fusion Mechanisms, pp. 413-424. Edited by J. Bentz. Boca Raton, FL: CRC Press.
  6. Blasco, R. & Moss, B. (1991). Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. Journal of Virology 65, 5910-5920. [Google Scholar]
  7. Blasco, R. & Moss, B. (1992). Role of cell-associated enveloped vaccinia virus in cell-to-cell virus spread. Journal of Virology 66, 4170-4179. [Google Scholar]
  8. Blasco, R. & Moss, B. (1995). Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158, 157-162.[CrossRef] [Google Scholar]
  9. Borrego, B., Lorenzo, M. M. & Blasco, R. (1999). Complementation of P37 (F13L gene) knock-out in vaccinia virus by a cell line expressing the gene constitutively. Journal of General Virology 80, 425-432. [Google Scholar]
  10. Boyle, D. B. & Coupar, B. E. (1986). Identification and cloning of the fowlpox virus thymidine kinase gene using vaccinia virus. Journal of General Virology 67, 1591-1600.[CrossRef] [Google Scholar]
  11. Calvert, J. G., Ogawa, R., Yanagida, N. & Nazerian, K. (1992). Identification and functional analysis of the fowlpox virus homolog of the vaccinia virus p37K major envelope antigen gene. Virology 191, 783-792.[CrossRef] [Google Scholar]
  12. Cao, J. X., Koop, B. F. & Upton, C. (1997). A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily. Virus Research 48, 11-18.[CrossRef] [Google Scholar]
  13. Carroll, M. W. & Moss, B. (1995).E. coli beta-glucuronidase (GUS) as a marker for recombinant vaccinia viruses.Biotechniques 19, 352-354. [Google Scholar]
  14. Child, S. J. & Hruby, D. E. (1992). Evidence for multiple species of vaccinia virus-encoded palmitylated proteins. Virology 191, 262-271.[CrossRef] [Google Scholar]
  15. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. (1995). Actin-based motility of vaccinia virus. Nature 378, 636-638.[CrossRef] [Google Scholar]
  16. Feller, J. A., Massung, R. F., Turner, P. C., Gibbs, E. P., Bockamp, E. O., Beloso, A., Talavera, A., Vinuela, E. & Moyer, R. W. (1991). Isolation and molecular characterization of the swinepox virus thymidine kinase gene. Virology 183, 578-585.[CrossRef] [Google Scholar]
  17. Foley, P. L., Paul, P. S., Levings, R. L., Hanson, S. K. & Middle, L. A. (1991). Swinepox virus as a vector for the delivery of immunogens. Annals of the New York Academy of Sciences 646, 220-222.[CrossRef] [Google Scholar]
  18. Grosenbach, D. W. & Hruby, D. E. (1998). Analysis of a vaccinia virus mutant expressing a nonpalmitylated form of p37, a mediator of virion envelopment. Journal of Virology 72, 5108-5120. [Google Scholar]
  19. Grosenbach, D. W., Ulaeto, D. O. & Hruby, D. E. (1997). Palmitylation of the vaccinia virus 37-kDa major envelope antigen. Identification of a conserved acceptor motif and biological relevance. Journal of Biological Chemistry 272, 1956-1964.[CrossRef] [Google Scholar]
  20. Gruidl, M. E., Hall, R. L. & Moyer, R. W. (1992). Mapping and molecular characterization of a functional thymidine kinase from Amsacta moorei entomopoxvirus. Virology 186, 507-516.[CrossRef] [Google Scholar]
  21. Hiller, G. & Weber, K. (1985). Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. Journal of Virology 55, 651-659. [Google Scholar]
  22. Hiller, G., Eibl, H. & Weber, K. (1981). Characterization of intracellular and extracellular vaccinia virus variants: N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine interferes with cytoplasmic virus dissemination and release. Journal of Virology 39, 903-913. [Google Scholar]
  23. Hirt, P., Hiller, G. & Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. Journal of Virology 58, 757-764. [Google Scholar]
  24. Jackson, R. J. & Hall, D. F. (1998). The myxoma virus EcoRI-O fragment encodes the DNA binding core protein and the major envelope protein of extracellular poxvirus. Virus Genes 17, 55-62.[CrossRef] [Google Scholar]
  25. Koonin, E. V. (1996). A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins.Trends in Biochemical Sciences 21, 242-243.[CrossRef] [Google Scholar]
  26. Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132.[CrossRef] [Google Scholar]
  27. Mackett, M., Smith, G. L. & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA 79, 7415-7419.[CrossRef] [Google Scholar]
  28. Massung, R. F. & Moyer, R. W. (1991a). The molecular biology of swinepox virus. I. A characterization of the viral DNA. Virology 180, 347-354.[CrossRef] [Google Scholar]
  29. Massung, R. F. & Moyer, R. W. (1991b). The molecular biology of swinepox virus. II. The infectious cycle. Virology 180, 355-364.[CrossRef] [Google Scholar]
  30. Massung, R. F., Jayarama, V. & Moyer, R. W. (1993). DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197, 511-528.[CrossRef] [Google Scholar]
  31. Panicali, D. & Paoletti, E. (1982). Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proceedings of the National Academy of Sciences, USA 79, 4927-4931.[CrossRef] [Google Scholar]
  32. Payne, L. (1978). Polypeptide composition of extracellular enveloped vaccinia virus. Journal of Virology 27, 28-37. [Google Scholar]
  33. Pearson, W. R. (1990). Rapid and sensitive sequence comparison with FASTP and FASTA. Methods in Enzymology 183, 63-98. [Google Scholar]
  34. Ponting, C. P. & Kerr, I. D. (1996). A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Science 5, 914-922. [Google Scholar]
  35. Roos, N., Cyrklaff, M., Cudmore, S., Blasco, R., Krijnse-Locker, J. & Griffiths, G. (1996). A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO Journal 15, 2343-2355. [Google Scholar]
  36. Sanderson, C. M., Frischknecht, F., Way, M., Hollinshead, M. & Smith, G. L. (1998). Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. Journal of General Virology 79, 1415-1425. [Google Scholar]
  37. Scheiflinger, F., Falkner, F. G. & Dorner, F. (1997). Role of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture.Archives of Virology 142, 2421-2431.[CrossRef] [Google Scholar]
  38. Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G. & Griffiths, G. (1994). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network.Journal of Virology 68, 130-147. [Google Scholar]
  39. Schmutz, C., Rindisbacher, L., Galmiche, M. C. & Wittek, R. (1995). Biochemical analysis of the major vaccinia virus envelope antigen. Virology 213, 19-27.[CrossRef] [Google Scholar]
  40. Schnitzlein, W. M. & Tripathy, D. N. (1991). Identification and nucleotide sequence of the thymidine kinase gene of swinepox virus.Virology 181, 727-732.[CrossRef] [Google Scholar]
  41. Schwarte, L. H. & Biester, H. E. (1941). Pox in swine.American Journal of Veterinary Research 2, 136-140. [Google Scholar]
  42. Sullivan, J. T., Mercer, A. A., Fleming, S. B. & Robinson, A. J. (1994). Identification and characterization of an orf virus homologue of the vaccinia virus gene encoding the major envelope antigen p37K. Virology 202, 968-973.[CrossRef] [Google Scholar]
  43. Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J. & Frohman, M. A. (1997). Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO Journal 16, 4519-4530.[CrossRef] [Google Scholar]
  44. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.[CrossRef] [Google Scholar]
  45. Tuboly, T., Nagy, E. & Derbyshire, J. B. (1993). Potential viral vectors for the stimulation of mucosal antibody responses against enteric viral antigens in pigs. Research in Veterinary Science 54, 345-350.[CrossRef] [Google Scholar]
  46. van der Leek, M. L., Feller, J. A., Sorensen, G., Isaacson, W., Adams, C. L., Borde, D. J., Pfeiffer, N., Tran, T., Moyer, R. W. & Gibbs, E. P. (1994). Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky’s disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63. Veterinary Record 134, 13-18.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error