The programme of Epstein–Barr virus (EBV) gene expression that leads to virus-induced growth transformation of resting B lymphocytes is initiated through activation of the HI W promoter, Wp. The factors regulating Wp, and the basis of its preferential activity in B cells, remain poorly understood. Previous work has identified a B cell-specific enhancer region which is critical for Wp function and which contains three binding sites for cellular factors. Here we focus on one of these sites and show, using bandshift assays, that it interacts with three members of the CREB/ATF family of cell transcription factors, CREB1, ATF1 and ATFa. A mutation which abrogates the binding of these factors reduces Wp reporter activity specifically in B cell lines, whereas a mutation which converts the site to a consensus CREB-binding sequence maintains wild-type promoter function. Furthermore Wp activity in B cell, but not in non-B cell, lines could be inhibited by cotransfection of expression plasmids expressing dominant negative forms of CREB1 and ATF1. Increasing the basal activity of CREB/ATF proteins in cells by treatment with protein kinase A or protein kinase C agonists led to small increases in Wp activity in B cell lines, but did not restore promoter activity in non-B cell lines up to B cell levels. We conclude that CREB/ATF factors are important activators of Wp in a B cell environment but require additional B cell-specific factors in order to mediate their effects.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abbot, S. D., Rowe, M., Cadwallader, K., Gordon, J., Ricksten, A., Rymo, L. & Rickinson, A. B. (1990). Epstein–Barr virus nuclear antigen 2 induces expression of the virus-coded latent membrane protein.Journal of Virology 64, 2126-2134. [Google Scholar]
  2. Alfieri, C., Birkenbach, M. & Kieff, E. (1991). Early events in Epstein–Barr virus infection of human B lymphocytes.Virology 181, 595-608.[CrossRef] [Google Scholar]
  3. Bell, A., Skinner, J., Kirby, K. & Rickinson, A. (1998). Characterization of regulatory sequences at the Epstein–Barr virus BamHI W promoter. Virology 252, 149-161.[CrossRef] [Google Scholar]
  4. Benbrook, D. M. & Jones, N. C. (1994). Different binding specificities and transactivation of variant CREs by CREB complexes. Nucleic Acids Research 22, 1463-1469.[CrossRef] [Google Scholar]
  5. Chatton, B., Bocco, J. L., Gaire, M., Hauss, C., Reimund, B., Goetz, J. & Kedinger, C. (1993). Transcriptional activation by the adenovirus large E1A product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1A. Molecular and Cellular Biology 13, 561-570. [Google Scholar]
  6. Chatton, B., Bocco, J. L., Goetz, J., Gaire, M., Lutz, Y. & Kedinger, C. (1994). Jun and Fos heterodimerise with ATFa, a member of the ATF/CREB family, and modulate its transcriptional activity.Oncogene 9, 375-385. [Google Scholar]
  7. De Cesare, D., Fimia, G. M. & Sassone-Corsi, P. (1999). Signalling routes to CREM and CREB: plasticity in transcriptional activation.Trends in Biochemical Sciences 24, 281-285.[CrossRef] [Google Scholar]
  8. Delmas, V., Molina, C. A., Lalli, E., DeGrot, R., Foulkes, N. S., Masquilier, D. & Sassone-Corsi, P. (1994). Complexity and versatility of the transcriptional responses to cAMP.Reviews of Physiology, Biochemistry and Pharmacology 124, 1-28. [Google Scholar]
  9. Fåhraeus, R., Jansson, A., Ricksten, A., Sjoblom, A. & Rymo, L. (1990). Epstein–Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element.Proceedings of the National Academy of Sciences, USA 87, 7390-7394.[CrossRef] [Google Scholar]
  10. Fåhraeus, R., Palmqvist, L., Nerdstedt, A., Farzad, S., Rymo, L. & Lain, S. (1994). Response to cAMP levels of the Epstein–Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity.EMBO Journal 13, 6041-6051. [Google Scholar]
  11. Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. (1991). CREM gene: use of alternative DNA binding domains generates multiple antagonists of cAMP induced transcription.Cell 64, 739-749.[CrossRef] [Google Scholar]
  12. Gaire, M., Chatton, B. & Kedinger, C. (1990). Isolation and characterisation of two novel closely related ATF cDNA clones from HeLa cells.Nucleic Acids Research 18, 3467-3473.[CrossRef] [Google Scholar]
  13. Harada, S. & Kieff, E. (1997). Epstein–Barr virus nuclear protein LP stimulates EBNA2 acidic domain mediated transcriptional activation.Journal of Virology 71, 6611-6618. [Google Scholar]
  14. Hurst, H., Totty, N. F. & Jones, N. C. (1991). Identification and functional characterisation of the cellular activating transcription factor 43 (ATF-43) protein.Nucleic Acids Research 19, 4601-4609.[CrossRef] [Google Scholar]
  15. Jansson, A., Masucci, M. & Rymo, L. (1992). Methylation of discrete sites within the enhancer region regulates the activity of the Epstein–Barr virus W promoter in Burkitt lymphoma lines.Journal of Virology 66, 62-69. [Google Scholar]
  16. Jin, X. W. & Speck, S. H. (1992). Identification of critical cis elements involved in mediating Epstein–Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter.Journal of Virology 66, 2846-2852. [Google Scholar]
  17. Johnson, P. F. & McKnight, S. L. (1989). Eukaryotic transcriptional regulatory proteins.Annual Review of Biochemistry 58, 799-839.[CrossRef] [Google Scholar]
  18. Kieff, E. (1996). Epstein–Barr virus and its replication. In Fields Virology, pp. 2343-2396. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  19. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. (1989). The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite.Science 243, 1681-1688.[CrossRef] [Google Scholar]
  20. Li, Q. X., Young, L. S., Niedobitek, G., Dawson, C., Birkenbach, M., Wang, F. & Rickinson, A. B. (1992). Epstein–Barr virus infection and replication in a human epithelial cell system.Nature 356, 347-350.[CrossRef] [Google Scholar]
  21. MacCallum, P., Karimi, L. & Nicholson, L. J. (1999). Definition of transcription factors which bind the differentiation responsive element of the Epstein–Barr virus BZLF1 promoter in human epithelial cells.Journal of General Virology 80, 1501-1512. [Google Scholar]
  22. Masson, N., John, J. & Lee, K. A. W. (1993). In vitro phosphorylation studies of a conserved region of the transcription factor ATF1.Nucleic Acids Research 21, 4166-4173.[CrossRef] [Google Scholar]
  23. Meyer, T. E. & Habener, J. F. (1993). Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription activating deoxyribonucleic acid binding proteins.Endocrine Reviews 14, 269-290. [Google Scholar]
  24. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. (1986). Identification of a cyclic AMP responsive element within the rat somatostatin gene.Proceedings of the National Academy of Sciences, USA 83, 6682-6686.[CrossRef] [Google Scholar]
  25. Nilsson, T., Sjoblom, A., Masucci, M. G. & Rymo, L. (1993). Viral and cellular factors influence the activity of the Epstein–Barr virus BCR2 and BWR1 promoters in cells of different phenotype.Virology 193, 774-785.[CrossRef] [Google Scholar]
  26. Nitsche, F., Bell, A. & Rickinson, A. (1997). Epstein–Barr virus leader protein (EBNA-LP) enhances the EBNA2-mediated transactivation of latent membrane protein LMP1 expression: a role for the W1W2 repeat domain. Journal of Virology 71, 6619-6628. [Google Scholar]
  27. Puglielli, M. T., Woisetschlaeger, M. & Speck, S. H. (1996). oriP is essential for EBNA gene promoter activity in Epstein–Barr virus immortalized lymphoblastoid cell lines.Journal of Virology 70, 5758-5768. [Google Scholar]
  28. Rehfuss, R. P., Walton, K. M., Loriaux, M. M. & Goodman, R. H. (1991). The cAMP-regulated enhancer-binding protein ATF-1 activates transcription in response to cAMP-dependent protein kinase A.Journal of Biological Chemistry 266, 18431-18434. [Google Scholar]
  29. Rickinson, A. B. & Kieff, E. (1996). Epstein–Barr virus. In Fields Virology, pp. 2397-2446. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  30. Ricksten, A., Olsson, A., Andersson, T. & Rymo, L. (1988). The 5′ flanking region of the gene for the Epstein–Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B cells.Nucleic Acids Research 16, 8391-8410.[CrossRef] [Google Scholar]
  31. Rooney, C. M., Brimmell, M., Buschle, M., Allan, G., Farrell, P. J. & Kolman, J. L. (1992). Host cell and EBNA2 regulation of Epstein–Barr virus latent cycle promoter activity in B lymphocytes.Journal of Virology 66, 496-504. [Google Scholar]
  32. Sample, J., Hummel., M., Braun, D., Birkenbach, M. & Kieff, E. (1986). Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins: a probable transcriptional initiation site.Proceedings of the National Academy of Sciences, USA 83, 5096-5100.[CrossRef] [Google Scholar]
  33. Sjöblom, A., Yang, W., Palmqvist, L., Jansson, A. & Rymo, L. (1998). An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein–Barr virus LMP1 gene promoter.Journal of Virology 72, 1365-1376. [Google Scholar]
  34. Sugano, N., Chen, W., Roberts, M. L. & Cooper, N. R. (1997). Epstein–Barr virus binding to CD21 activates the initial viral promoter via NF-KB activation.Journal of Experimental Medicine 186, 1-7.[CrossRef] [Google Scholar]
  35. Sung, N. S., Kenney, S., Gutsch, D. & Pagano, J. S. (1991). EBNA2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein–Barr virus.Journal of Virology 65, 2164-2169. [Google Scholar]
  36. Walton, K. M., Rehfuss, R. P., Chrivia, J. C., Lochner, J. E. & Goodman, R. H. (1992). A dominant repressor of cyclic adenosine 3′,5′ monophosphate (cAMP)-regulated enhancer binding protein activity inhibits the cAMP mediated induction of the somatostatin promoter in vivo.Molecular Endocrinology 6, 647-655. [Google Scholar]
  37. Wang, F., Tsang, S.-F., Kurilla, M. G., Cohen, J. J. & Kieff, E. (1990). Epstein–Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1.Journal of Virology 64, 3407-3416. [Google Scholar]
  38. Wang, J., Huang, J. M. & Montalvo, E. A. (1997). Characterization of proteins binding to the ZII element in the Epstein–Barr virus BZLF1 promoter: transactivation by ATF1.Virology 227, 323-330.[CrossRef] [Google Scholar]
  39. Wilson, B. E., Mochon, E. & Boxer, L. M. (1996). Induction of bcl-2 expression by phosphorylated CREB proteins during B cell activation and rescue from apoptosis. Molecular and Cellular Biology 16, 5546-5556. [Google Scholar]
  40. Woisetschlaeger, M., Yandava, C. N., Furmanski, L. A., Strominger, J. L. & Speck, S. H. (1990). Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proceedings of the National Academy of Sciences, USA 87, 1725-1729.[CrossRef] [Google Scholar]
  41. Woisetschlaeger, M., Jin, X. W., Yandava, C. N., Furmanski, L. A., Strominger, J. L. & Speck, S. H. (1991). Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during the initial stages of infection. Journal of Virology 88, 3942-3946. [Google Scholar]
  42. Xie, H. & Rothstein, T. L. (1995). Protein kinase C mediates activation of nuclear cAMP response element binding protein (CREB) in B lymphocytes stimulated through surface Ig. Journal of Immunology 154, 1717-1723. [Google Scholar]
  43. Xie, H., Wang, Z. & Rothstein, T. L. (1996). Signaling pathways for antigen receptor-mediated induction of transcription factor CREB in B lymphocytes. Cellular Immunology 169, 264-270.[CrossRef] [Google Scholar]
  44. Yang, Y. M., Dolan, L. R. & Ronai, Z. (1996). Expression of dominant negative CREB reduces resistance to radiation of human melanoma cells. Oncogene 12, 2223-2233. [Google Scholar]
  45. Ying, L., Morris, B. J. & Sigmund, C. D. (1997). Transactivation of the human renin promoter by the cyclic AMP/protein kinase A pathway is mediated by both cAMP responsive element binding protein-1 (CREB)-dependent and CREB-independent mechanisms in Calu-6 cells. Journal of Biological Chemistry 272, 2412-2420.[CrossRef] [Google Scholar]
  46. Zimber-Strobl, U., Suentzenich, K.-O., Laux, G., Eick, E., Cordier, M., Calender, A., Billaud, M., Lenoir, G. M. & Bornkamm, G. W. (1991). Epstein–Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. Journal of Virology 65, 415-423. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error