1887

Abstract

Serological diagnosis of herpes simplex virus (HSV) infections requires assays based on antigens that expose type-specific determinants. This study was designed to outline the B-cell epitopes of the type-specific glycoprotein G-1 (gG-1) of HSV type 1 (HSV-1), by investigating the reactivity of human anti-gG-1 antibodies, purified from 21 HSV-1-isolation-proven patient sera, to cellulose-bound synthetic peptides spanning the entire gG-1 sequence. The epitope mapping demonstrated that these antibodies bound preferentially to antigenic determinants that localized to regions with a high degree of amino acid similarity to the corresponding glycoprotein in HSV-2, gG-2. In spite of this, the purified anti-gG-1 antibodies were found to be non-reactive to native gG-2 antigen, as well as to overlapping gG-2 peptides, thus supporting the role of gG-1 as a prototype HSV-1 type-specific antigen. One immunodominant region, delimited by amino acids 112–127, reacted with all purified anti-gG-1 antibodies and may be of interest for the further development of a peptide-based HSV-1 type-specific seroassay.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-4-1033
2000-04-01
2021-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/4/0811033a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-4-1033&mimeType=html&fmt=ahah

References

  1. Ackermann, G., Ackermann, F., Eggers, H. J., Wieland, U. & Kühn, J. E. (1998). Mapping of linear antigenic determinants on glycoprotein C of herpes simplex virus type 1 and type 2 recognized by human serum immunoglobulin G antibodies.Journal of Medical Virology 55, 281-287.[CrossRef] [Google Scholar]
  2. Ashley, R. L. (1993). Laboratory techniques in the diagnosis of herpes simplex virus infection.Genitourinary Medicine 69, 174-183. [Google Scholar]
  3. Ashley, R., Cent, A., Maggs, V., Nahmias, A. & Corey, L. (1991). Inability of enzyme immunoassays to discriminate between infections with herpes simplex virus type 1 and 2.Annals of Internal Medicine 115, 520-526.[CrossRef] [Google Scholar]
  4. Ashley, R. L., Wu, L., Pickering, J. W., Tu, M.-C. & Schnorenberg, L. (1998). Premarket evaluation of a commercial glycoprotein G-based enzyme immunoassay for herpes simplex virus type-specific antibodies.Journal of Clinical Microbiology 36, 294-295. [Google Scholar]
  5. Bergström, T. & Trybala, E. (1996). Antigenic differences between HSV-1 and HSV-2 glycoproteins and their importance for type-specific serology.Intervirology 39, 176-184. [Google Scholar]
  6. Bergström, T., Sjögren-Jansson, E., Jeansson, S. & Lycke, E. (1992). Mapping neuroinvasiveness of the herpes simplex virus type 1 encephalitis-inducing strain 2762 by the use of monoclonal antibodies.Molecular and Cellular Probes 6, 41-49.[CrossRef] [Google Scholar]
  7. Corey, L. (1994). The current trend in genital herpes. Progress in prevention.Sexually Transmitted Diseases 21, S38-S44. [Google Scholar]
  8. Corey, L. (1998). Raising the consciousness for identifying and controlling viral STDs: fears and frustrations.Sexually Transmitted Diseases 25, 58-69.[CrossRef] [Google Scholar]
  9. Dolter, K. E., Goins, W. F., Levine, M. & Glorioso, J. C. (1992). Genetic analysis of type-specific antigenic determinants of herpes simplex virus glycoprotein C.Journal of Virology 66, 4864-4873. [Google Scholar]
  10. Elion, G. B. (1982). Mechanism of action and selectivity of acyclovir.American Journal of Medicine 73, 7-13.[CrossRef] [Google Scholar]
  11. Field, P. R., Ho, D. W. T., Irving, W. L., Isaacs, D. & Cunningham, A. L. (1993). The reliability of serological tests for the diagnosis of genital herpes: a critique.Pathology 25, 175-179.[CrossRef] [Google Scholar]
  12. Forsgren, M., Skoog, E., Jeansson, S., Olofsson, S. & Giesecke, J. (1994). Prevalence of antibodies to herpes simplex virus in pregnant women in Stockholm in 1969, 1983 and 1989: implications for STD epidemiology.International Journal of STD & AIDS 5, 113-116. [Google Scholar]
  13. Frank, R. (1992). Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support.Tetrahedron 48, 9217-9232.[CrossRef] [Google Scholar]
  14. Gao, B. & Esnouf, M. P. (1996). Multiple interactive residues of recognition: elucidation of discontinuous epitopes with linear peptides.Journal of Immunology 157, 183-188. [Google Scholar]
  15. Grabowska, A., Jameson, C., Laing, P., Jeansson, S., Sjögren-Jansson, E., Taylor, J., Cunningham, A. & Irving, W. L. (1999). Identification of type-specific domains within glycoprotein G of herpes simplex virus type 2 (HSV-2) recognized by the majority of patients infected with HSV-2, but not by those infected with HSV-1.Journal of General Virology 80, 1789-1798. [Google Scholar]
  16. Gunalp, A. (1965). Growth and cytopathic effect of rubella virus in a line of green monkey kidney cells.Proceedings of the Society for Experimental Biology and Medicine 118, 85-90.[CrossRef] [Google Scholar]
  17. Ho, D. W. T., Field, P. R., Sjögren-Jansson, E., Jeansson, S. & Cunningham, A. L. (1992). Indirect ELISA for the detection of HSV-2 specific IgG and IgM antibodies with glycoprotein G (gG-2).Journal of Virological Methods 36, 249-264.[CrossRef] [Google Scholar]
  18. Jeansson, S., Forsgren, M. & Svennerholm, B. (1983). Evaluation of solubilized herpes simplex virus membrane antigen by enzyme-linked immunosorbent assay.Journal of Clinical Microbiology 18, 1160-1166. [Google Scholar]
  19. Kramer, A., Schuster, A., Reineke, U., Malin, R., Volkmer-Engert, R., Landgraf, C. & Schneider-Mergener, J. (1994). Combinatorial cellulose-bound peptide libraries: screening tools for the identification of peptides that bind ligands with predefined specificity.Methods 6, 388-395.[CrossRef] [Google Scholar]
  20. Laver, W. G., Air, G. M., Webster, R. G. & Smith-Gill, S. J. (1990). Epitopes on protein antigens: misconceptions and realities.Cell 61, 553-556.[CrossRef] [Google Scholar]
  21. Lee, F. K., Coleman, R. M., Pereira, L., Bailey, P. D., Tatsuno, M. & Nahmias, A. J. (1985). Detection of herpes simplex virus type 2-specific antibody with glycoprotein G.Journal of Clinical Microbiology 22, 641-644. [Google Scholar]
  22. Lee, F. K., Pereira, L., Griffin, C., Reid, E. & Nahmias, A. (1986). A novel glycoprotein for detection of herpes simplex virus type 1-specific antibodies.Journal of Virological Methods 14, 111-118.[CrossRef] [Google Scholar]
  23. Leinikki, P., Lehtinen, M., Hyöty, H., Parkkonen, P., Kantanen, M. L. & Hakulinen, J. (1993). Synthetic peptides as diagnostic tools in virology.Advances in Virus Research 42, 149-186. [Google Scholar]
  24. Liljeqvist, J.-Å., Trybala, E., Svennerholm, B., Jeansson, S., Sjögren-Jansson, E. & Bergström, T. (1998). Localization of type-specific epitopes of herpes simplex virus type 2 glycoprotein G recognized by human and mouse antibodies.Journal of General Virology 79, 1215-1224. [Google Scholar]
  25. McGeoch, D. J., Dolan, A., Donald, S. & Rixon, F. J. (1985). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1.Journal of Molecular Biology 181, 1-13.[CrossRef] [Google Scholar]
  26. McGeoch, D. J., Moss, H. W. M., McNab, D. & Frame, M. C. (1987). DNA sequence and genetic content of the HindIII l region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons.Journal of General Virology 68, 19-38.[CrossRef] [Google Scholar]
  27. Marsden, H. S., MacAulay, K., Murray, J. & Smith, I. W. (1998). Identification of an immunodominant sequential epitope in glycoprotein G of herpes simplex virus type 2 that is useful for serotype-specific diagnosis.Journal of Medical Virology 56, 79-84.[CrossRef] [Google Scholar]
  28. Mertz, G. J. (1990). Genital herpes simplex virus infections.Medical Clinics of North America 74, 1433-1454. [Google Scholar]
  29. Nahmias, A. J., Lee, F. K. & Beckman-Nahmias, S. (1990). Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world.Scandinavian Journal of Infectious Diseases Supplementum 69, 19-36. [Google Scholar]
  30. Nilheden, E., Jeansson, S. & Vahlne, A. (1983). Typing of herpes simplex virus by an enzyme-linked immunosorbent assay with monoclonal antibodies.Journal of Clinical Microbiology 17, 677-680. [Google Scholar]
  31. Olofsson, S., Lundström, M., Marsden, H., Jeansson, S. & Vahlne, A. (1986). Characterization of a herpes simplex virus type 2-specified glycoprotein with affinity for N-acetylgalactosamine-specific lectins and its identification as g92K or gG.Journal of General Virology 67, 737-744.[CrossRef] [Google Scholar]
  32. Pereira, F. A. (1996). Herpes simplex: evolving concepts.Journal of the American Academy of Dermatology 35, 503-520.[CrossRef] [Google Scholar]
  33. Reineke, U., Sabat, R., Kramer, A., Stigler, R.-D., Seifert, M., Michel, T., Volk, H.-D. & Schneider-Mergener, J. (1996). Mapping protein–protein contact sites using cellulose-bound peptide scans.Molecular Diversity 1, 141-148.[CrossRef] [Google Scholar]
  34. Rekabdar, E., Tunbäck, P., Liljeqvist, J.-Å. & Bergström, T. (1999). Variability of the glycoprotein G gene in clinical isolates of herpes simplex virus type 1.Clinical and Diagnostic Laboratory Immunology 6, 826-831. [Google Scholar]
  35. Sanchez-Martinez, D., Schmid, D. S., Whittington, W., Brown, D., Reeves, W. C., Chatterjee, S., Whitley, R. J. & Pellett, P. E. (1991). Evaluation of a test based on baculovirus-expressed glycoprotein G for detection of herpes simplex virus type-specific antibodies.Journal of Infectious Diseases 164, 1196-1199.[CrossRef] [Google Scholar]
  36. Svennerholm, B., Olofsson, S., Jeansson, S., Vahlne, A. & Lycke, E. (1984). Herpes simplex virus type-selective enzyme-linked immunosorbent assay with Helix pomatia lectin-purified antigens.Journal of Clinical Microbiology 19, 235-239. [Google Scholar]
  37. Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, USA 76, 4350-4354.[CrossRef] [Google Scholar]
  38. Van Regenmortel, M. H. V. (1995). Transcending the structuralist paradigm in immunology – affinity and biological activity rather than purely structural considerations should guide the design of synthetic peptide epitopes.Biomedical Peptides, Proteins & Nucleic Acids 1, 109-116. [Google Scholar]
  39. Van Regenmortel, M. H. V. (1996). Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity.Methods 9, 465-472.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-4-1033
Loading
/content/journal/jgv/10.1099/0022-1317-81-4-1033
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error