1887

Abstract

A canine isolate (strain T1) of simian virus 5 (SV-5) performed multiple replication in BHK cells but did not induce cell fusion for up to 3 days. In contrast, a prototype strain (WR) provoked extensive cell fusion within 2 days during the course of its replication. Accordingly, the fusion (F) protein of the T1 strain did not cause cell fusion even when co-expressed with the SV-5 haemagglutinin–neuraminidase (HN) protein, whereas the WR F protein induced cell fusion in the presence of the HN protein. Differences in the predicted amino acid sequences of the T1 and WR F proteins were found at 12 positions and it was proved that the T1 F protein had a longer cytoplasmic tail than the WR F protein. By reducing the length of the cytoplasmic tail or by replacing the tail with the WR F counterpart, the T1 F protein partly restored its HN-dependent fusing activity. Chimeric and mutational analyses between the T1 F protein and the mutant F protein (L22P) suggested that Glu-132 in the heptad repeat 1 domain was involved in the HN-independent fusing activity in addition to the previously identified Pro-22 at the F N terminus. It was also shown that Ala-290 in the heptad repeat 3 domain contributed to the HN-independent fusing activity to some extent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-3-719
2000-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/3/0810719a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-3-719&mimeType=html&fmt=ahah

References

  1. Asano, K., Murachi, T. & Asano, A. (1983). Structural requirements for haemolytic activity of F-glycoprotein of HVJ (Sendai virus) studied by proteolytic dissection.Journal of Biochemistry 93, 733-741.[CrossRef] [Google Scholar]
  2. Azetaka, M. & Konishi, S. (1988). Kennel cough complex: confirmation and analysis of the outbreak in Japan.Japanese Journal of Veterinary Science 50, 851-858.[CrossRef] [Google Scholar]
  3. Baker, K. A., Dutch, R. E., Lamb, R. A. & Jardetzky, T. S. (1999). Structural basis for paramyxovirus-mediated membrane fusion.Molecular Cell 3, 309-319.[CrossRef] [Google Scholar]
  4. Baty, D. U., Southern, J. A. & Randall, R. E. (1991). Sequence comparison between the haemagglutinin–neuraminidase genes of simian, canine and human isolates of simian virus 5.Journal of General Virology 72, 3103-3107.[CrossRef] [Google Scholar]
  5. Buckland, R., Malvoisin, E., Beauverger, P. & Wild, F. (1992). A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion.Journal of General Virology 73, 1703-1707.[CrossRef] [Google Scholar]
  6. Chambers, P., Pringle, C. R. & Easton, A. J. (1992). Sequence analysis of the gene encoding the fusion glycoprotein of pneumonia virus of mice suggests possible conserved secondary structure elements in paramyxovirus fusion glycoproteins.Journal of General Virology 73, 1717-1724.[CrossRef] [Google Scholar]
  7. Dutch, R. E., Leser, G. P. & Lamb, R. A. (1999). Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in anti-parallel orientation.Virology 254, 147-159.[CrossRef] [Google Scholar]
  8. Gething, M.-J., White, J. M. & Waterfield, M. D. (1978). Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation.Proceedings of the National Academy of Sciences, USA 75, 2737-2740.[CrossRef] [Google Scholar]
  9. Ghosh, J. K., Ovadia, M. & Shai, Y. (1997). A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solution and in membranes and specifically binds biologically-active peptides and the virus.Biochemistry 36, 15451-15462.[CrossRef] [Google Scholar]
  10. Heminway, B. R., Yu, Y. & Galinski, M. S. (1994). Paramyxovirus mediated cell fusion requires co-expression of both the fusion and haemagglutinin–neuraminidase glycoproteins.Virus Research 31, 1-16.[CrossRef] [Google Scholar]
  11. Homma, M. & Ohuchi, M. (1973). Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural differences of Sendai virus grown in eggs and tissue culture cells.Journal of Virology 12, 1547-1463. [Google Scholar]
  12. Horvath, C. M., Paterson, R. G., Shaughnessy, M. A., Wood, R. & Lamb, R. A. (1992). Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia.Journal of Virology 66, 4564-4569. [Google Scholar]
  13. Hsu, M.-C., Scheid, A. & Choppin, P. W. (1981). Activation of the Sendai virus fusion protein (F) involved a conformational change with exposure of a new hydrophobic region.Journal of Biological Chemistry 256, 3557-3565. [Google Scholar]
  14. Ito, M., Nishio, M., Kawano, M., Kusagawa, S., Komada, H., Ito, Y. & Tsurudome, M. (1997). Role of a single amino acid at the amino terminus of the simian virus 5 F2 subunit in syncytium formation.Journal of Virology 71, 9855-9858. [Google Scholar]
  15. Kohama, T., Garten, W. & Klenk, H.-D. (1981). Changes in conformation and charge paralleling proteolytic activation of Newcastle disease virus glycoproteins.Virology 111, 364-376.[CrossRef] [Google Scholar]
  16. Lamb, R. A. (1993). Paramyxovirus fusion: a hypothesis for changes.Virology 197, 1-11.[CrossRef] [Google Scholar]
  17. Neyt, C., Geliebter, J., Slaoui, M., Morales, D., Meulemans, G. & Burny, A. (1989). Mutations located on both F1 and F2 subunits of the Newcastle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies.Journal of Virology 63, 952-954. [Google Scholar]
  18. Nishikawa, F., Sugiyama, T., Takasaka, M. & Honjo, S. (1974). Epidemiology of myxo-paramyxovirus infections among cynomolgus monkeys imported for laboratory use. Japanese Journal of Medical Science and Biology 27, 249-262.[CrossRef] [Google Scholar]
  19. Novick, S. L. & Hoekstra, D. (1988). Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labelling.Proceedings of the National Academy of Sciences, USA 85, 7433-7437.[CrossRef] [Google Scholar]
  20. Ozawa, M., Asano, A. & Okada, Y. (1979). The presence and cleavage of interpeptide disulfide bonds in viral glycoproteins.Journal of Biochemistry 86, 1361-1369. [Google Scholar]
  21. Paterson, R. G., Harris, T. J. R. & Lamb, R. A. (1984). Fusion protein of the paramyxovirus simian virus 5: nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein.Proceedings of the National Academy of Sciences, USA 81, 6706-6710.[CrossRef] [Google Scholar]
  22. Paterson, R. G., Hiebert, S. W. & Lamb, R. A. (1985). Expression at the cell surface of biologically active fusion and haemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA.Proceedings of the National Academy of Sciences, USA 82, 7520-7524.[CrossRef] [Google Scholar]
  23. Randall, R. E., Young, D. F., Goswami, K. K. A. & Russell, W. C. (1987). Isolation and characterization of monoclonal antibodies to simian virus 5 and their use in revealing antigenic differences between human, canine and simian isolates.Journal of General Virology 68, 2769-2780.[CrossRef] [Google Scholar]
  24. Reitter, J. N., Sergel, T. & Morrison, T. G. (1995). Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein.Journal of Virology 69, 5995-6004. [Google Scholar]
  25. Schägger, H. & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.Analytical Biochemistry 166, 368-379.[CrossRef] [Google Scholar]
  26. Scheid, A. & Choppin, P. W. (1974). Identification and biological activities of paramyxovirus glycoproteins. Activation of cell fusion, haemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus.Virology 57, 475-490.[CrossRef] [Google Scholar]
  27. Tabata, N., Ito, M., Shimokata, K., Suga, S., Ohgimoto, S., Tsurudome, M., Kawano, M., Matsumura, H., Komada, H., Nishio, M. & Ito, Y. (1994). Expression of fusion regulatory proteins (FRPs) on human peripheral blood lymphocytes. Induction of homotypic cell aggregation and formation of multinucleated giant cells by anti-FRP-1 monoclonal antibody.Journal of Immunology 153, 3256-3266. [Google Scholar]
  28. Takebe, Y., Seiki, M., Fujisawa, J., Hoy, P., Yokota, K., Arai, K., Yoshida, M. & Arai, N. (1988). SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of the human T-cell leukaemia virus type 1 long terminal repeat.Molecular and Cellular Biology 8, 466-472. [Google Scholar]
  29. Toyoda, T., Gotoh, B., Sakaguchi, T., Kida, H. & Nagai, Y. (1988). Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization.Journal of Virology 62, 4427-4430. [Google Scholar]
  30. Tsurudome, M., Nishio, M., Komada, H., Bando, H. & Ito, Y. (1989). Extensive antigenic diversity among human parainfluenza type 2 virus isolates and immunological relationships among paramyxoviruses revealed by monoclonal antibodies.Virology 171, 38-48.[CrossRef] [Google Scholar]
  31. Tsurudome, M., Bando, H., Kawano, M., Matsumura, H., Komada, H., Nishio, M. & Ito, Y. (1991). Transcripts of simian virus 41 (SV41) matrix gene are exclusively dicistronic with the fusion gene which is also transcribed as a monocistron.Virology 184, 93-100.[CrossRef] [Google Scholar]
  32. Tsurudome, M., Kawano, M., Yuasa, T., Tabata, N., Nishio, M., Komada, H. & Ito, Y. (1995). Identification of regions on the haemagglutinin-neuraminidase protein of human parainfluenza virus type 2 important for promoting cell fusion.Virology 213, 190-203.[CrossRef] [Google Scholar]
  33. Tsurudome, M., Ito, M., Nishio, M., Kawano, M., Okamoto, K., Kusagawa, S., Komada, H. & Ito, Y. (1998). Identification of regions on the fusion protein of human parainfluenza type 2 virus which are required for haemagglutinin–neuraminidase proteins to promote cell fusion. Journal of General Virology 79, 279-289. [Google Scholar]
  34. Wang, C., Raghu, G., Morrison, T. & Peeples, M. E. (1992). Intracellular processing of the paramyxovirus F protein: critical role in the predicted amphipathic alpha helix adjacent to the fusion domain. Journal of Virology 66, 4161-4169. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-3-719
Loading
/content/journal/jgv/10.1099/0022-1317-81-3-719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error