The DNA sequence of the infectious laryngotracheitis virus (ILTV) UL50, UL51 and UL52 gene homologues was determined. Although the deduced UL50 protein lacks the first of five conserved domains of the corresponding proteins of mammalian alphaherpesviruses, the ILTV gene product was also shown to possess dUTPase activity. The generation of UL50-negative ILTV mutants was facilitated by recombination plasmids encoding green fluorescent protein (GFP), and expression constructs of predicted transactivator proteins of ILTV (αTIF, ICP4) were successfully used to increase the infectivity of viral genomic DNA. A GFP-expressing UL50-deletion mutant of ILTV showed reduced cell-to-cell spread , and was attenuated . A similar deletion mutant without the foreign gene, however, propagated like wild-type ILTV in cell culture and was pathogenic in chickens. We conclude that the viral dUTPase is not required for efficient replication of ILTV in the respiratory tract of infected animals. The replication defect of the GFP-expressing ILTV recombinant is most likely caused by toxic effects of the reporter gene product, since spontaneously occurring inactivation mutants exhibited wild-type-like growth.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baer, R. J., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farell, P. J., Gibson, T. J., Hatfull, G. F., Hudson, G. S., Satchwell, S. C., Seguin, C., Tuffnell, P. S. & Barrell, B. G. (1984). DNA sequence and expression of the B95-8 Epstein–Barr virus genome.Nature 310, 207-211.[CrossRef] [Google Scholar]
  2. Bagust, T. J. & Guy, J. S. (1997). Laryngotracheitis. In Diseases of Poultry, pp. 527-539. Edited by B. W. Calnek, H. J. Barnes, C. W. Beard, L. R. McDougald & Y. M. Saif. Ames: Iowa State University Press.
  3. Bagust, T. J. & Johnson, M. A. (1995). Avian infectious laryngotracheitis: virus–host interactions in relation to prospects for eradication.Avian Pathology 24, 373-391.[CrossRef] [Google Scholar]
  4. Barker, D. E. & Roizman, B. (1990). Identification of three genes nonessential for growth in cell culture near the right terminus of the unique sequences of long component of herpes simplex virus 1.Virology 177, 684-691.[CrossRef] [Google Scholar]
  5. Baumeister, J., Klupp, B. G. & Mettenleiter, T. C. (1995). Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster.Journal of Virology 69, 5560-5567. [Google Scholar]
  6. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchinson, C. A., Kouzarides, T., Martignetti, J. A., Preddie, E., Satchwell, S. C., Tomlinson, P., Weston, K. M. & Barrell, B. G. (1990). Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169.Current Topics in Microbiology and Immunology 154, 125-169. [Google Scholar]
  7. Crute, J. J., Tsurumi, T., Zhu, L., Weller, S. K., Olivo, P. D., Challberg, M. D., Mocarski, E. S. & Lehman, I. R. (1989). Herpes simplex virus 1 helicase–primase: a complex of three herpes-encoded gene products.Proceedings of the National Academy of Sciences, USA 86, 2186-2189.[CrossRef] [Google Scholar]
  8. Daikoku, T., Ikenoya, K., Yamada, H., Goshima, F. & Nishiyama, Y. (1998). Identification and characterization of the herpes simplex virus type 1 UL51 gene product.Journal of General Virology 79, 3027-3031. [Google Scholar]
  9. Dargan, D. J. & Subak-Sharpe, J. H. (1997). The effect of herpes simplex virus type 1 L-particles on virus entry, replication, and the infectivity of naked herpesvirus DNA.Virology 239, 378-388.[CrossRef] [Google Scholar]
  10. Davison, A. J. & Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus.Journal of General Virology 67, 1759-1816.[CrossRef] [Google Scholar]
  11. Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Research 12, 387-395.[CrossRef] [Google Scholar]
  12. Duker, N. J. & Grant, C. L. (1980). Alterations in the levels of deoxyuridine triphosphatase, uracil-DNA glycosylase and AP endonuclease during the cell cycle.Experimental Cell Research 125, 493-497.[CrossRef] [Google Scholar]
  13. Fuchs, W. & Mettenleiter, T. C. (1996). DNA sequence and transcriptional analysis of the UL1 to UL5 gene cluster of infectious laryngotracheitis virus.Journal of General Virology 77, 2221-2229.[CrossRef] [Google Scholar]
  14. Fuchs, W. & Mettenleiter, T. C. (1999). DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein.Journal of General Virology 80, 2173-2182. [Google Scholar]
  15. Graham, F. L. & van der Eb, A. J. (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA.Virology 52, 456-467.[CrossRef] [Google Scholar]
  16. Griffin, A. M. (1991). The nucleotide sequence of the glycoprotein gB gene of infectious laryngotracheitis virus: analysis and evolutionary relationship to the homologous gene from other herpesviruses.Journal of General Virology 72, 393-398.[CrossRef] [Google Scholar]
  17. Griffin, A. M. & Boursnell, M. E. G. (1990). Analysis of the nucleotide sequence of DNA from the region of the thymidine kinase gene of infectious laryngotracheitis virus; potential evolutionary relationships between the herpesvirus subfamilies. Journal of General Virology 71, 841-850.[CrossRef] [Google Scholar]
  18. Izumiya, Y., Jang, H.-K., Kashiwase, H., Cai, J.-S., Nishimura, Y., Tsushima, Y., Kato, K., Miyazawa, T., Kai, C. & Mikami, T. (1998). Identification and transcriptional analysis of the homologues of the herpes simplex type 1 UL41 to UL51 genes in the genome of nononcogenic Marek’s disease virus serotype 2.Journal of General Virology 79, 1997-2001. [Google Scholar]
  19. Izumiya, Y., Jang, H.-K., Cai, C.-S., Nishimura, Y., Nakamura, K., Tsushima, Y., Kato, K., Miyzawa, T., Kai, C. & Mikami, T. (1999). Identification and sequence analysis of the Marek’s disease virus serotype 2 gene homologous to the herpes simplex virus type 1 UL52 protein.Journal of Veterinary Medical Science 61, 683-687.[CrossRef] [Google Scholar]
  20. Johnson, M. A., Prideaux, C. T., Kongsuwan, K., Sheppard, M. & Fahey, K. J. (1991). Gallid herpesvirus 1 (infectious laryngotracheitis virus): cloning and physical maps of the SA-2 strain.Archives of Virology 119, 181-198.[CrossRef] [Google Scholar]
  21. Johnson, M. A., Tyack, S. G., Prideaux, C. T., Kongsuwan, K. & Sheppard, M. (1995a). Nucleotide sequence of infectious laryngotracheitis virus (gallid herpesvirus 1) ICP4 gene.Virus Research 35, 193-204.[CrossRef] [Google Scholar]
  22. Johnson, M. A., Prideaux, C. T., Kongsuwan, K., Tyack, S. G. & Sheppard, M. (1995b). ICP27 immediate early gene, glycoprotein K (gK) and DNA helicase homologues of infectious laryngotracheitis virus (gallid herpesvirus 1) SA-2 strain.Archives of Virology 140, 623-634.[CrossRef] [Google Scholar]
  23. Johnson, M. A., Tyack, S. G., Prideaux, C. T., Kongsuwan, K. & Sheppard, M. (1997). Nucleotide sequence of the left-terminus of infectious laryngotracheitis virus (gallid herpesvirus 1) SA-2 strain.Archives of Virology 142, 1903-1910.[CrossRef] [Google Scholar]
  24. Jöns, A. & Mettenleiter, T. C. (1996). Identification and characterization of pseudorabies virus dUTPase.Journal of Virology 70, 1242-1245. [Google Scholar]
  25. Jöns, A., Gerdts, V., Lange, E., Kaden, V. & Mettenleiter, T. C. (1997). Attenuation of dUTPase-deficient pseudorabies virus for the natural host.Veterinary Microbiology 56, 47-54.[CrossRef] [Google Scholar]
  26. Kawaguchi, T., Nomura, K., Hirayama, Y. & Kitagawa, T. (1987). Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH.Cancer Research 47, 4460-4464. [Google Scholar]
  27. Kingsley, D. H., Hazel, J. W. & Keeler, C. L.Jr (1994). Identification and characterization of the infectious laryngotracheitis virus glycoprotein C gene.Virology 203, 336-343.[CrossRef] [Google Scholar]
  28. Kremmer, E., Sommer, P., Holzer, D., Galetsky, S. A., Molochkov, V. A., Gurtsevitch, V., Winkelmann, C., Lisner, R., Niedobitek, G. & Grässer, F. A. (1999). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) ORF54 encodes a functional dUTPase expressed in the lytic replication cycle.Journal of General Virology 80, 1305-1310. [Google Scholar]
  29. Leib, D. A., Bradbury, J. M., Hart, C. A. & McCarthy, K. (1987). Genome isomerism in two alphaherpesviruses: herpesvirus saimiri-1 (herpesvirus tamarinus) and avian infectious laryngotracheitis virus.Archives of Virology 93, 287-294.[CrossRef] [Google Scholar]
  30. Lenk, M., Visser, N. & Mettenleiter, T. C. (1997). The pseudorabies virus UL51 gene product is a 30-kilodalton virion component.Journal of Virology 71, 5635-5638. [Google Scholar]
  31. Liang, X., Tang, M., Mannis, B., Babiuk, L. A. & Zamb, T. J. (1993). Identification and deletion mutagenesis of the bovine herpesvirus 1 dUTPase gene and a gene homologous to herpes simplex virus UL49.5.Virology 195, 42-50.[CrossRef] [Google Scholar]
  32. McGeoch, D. J. (1990). Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family.Nucleic Acids Research 18, 4105-4110.[CrossRef] [Google Scholar]
  33. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1.Journal of General Virology 69, 1531-1574.[CrossRef] [Google Scholar]
  34. Moriuchi, M., Moriuchi, H., Straus, S. E. & Cohen, J. I. (1993). Varicella-zoster virus (VZV) open reading frame 61 protein transactivates VZV gene promoters and enhances the infectivity of VZV DNA.Journal of Virology 67, 4290-4295. [Google Scholar]
  35. Moriuchi, M., Moriuchi, H., Straus, S. E. & Cohen, J. I. (1994). Varicella-zoster virus (VZV) virion-associated transactivator open reading frame 62 protein enhances the infectivity of VZV DNA.Virology 200, 297-300.[CrossRef] [Google Scholar]
  36. Okamura, H., Sakaguchi, M., Honda, T., Taneno, A., Matsuo, K. & Yamada, S. (1994). Construction of recombinant infectious laryngotracheitis virus expressing the lacZ gene of E. coli with thymidine kinase gene.Journal of Veterinary Medical Science 56, 799-801.[CrossRef] [Google Scholar]
  37. Pyles, R. B., Sawtell, N. M. & Thomson, R. L. (1992). Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency.Journal of Virology 66, 6706-6713. [Google Scholar]
  38. Roizman, B. (1996).Herpesviridae. In Fields Virology, pp. 2221-2230. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  39. Ross, J., Williams, M. & Cohen, J. I. (1997). Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro.Virology 234, 186-195.[CrossRef] [Google Scholar]
  40. Schnitzlein, W. M., Radzevicius, J. & Tripathy, D. N. (1994). Propagation of infectious laryngotracheitis virus in an avian liver cell line.Avian Diseases 38, 211-217.[CrossRef] [Google Scholar]
  41. Schnitzlein, W. M., Winans, R., Ellsworth, S. & Tripathy, D. N. (1995). Generation of thymidine kinase-deficient mutants of infectious laryngotracheitis virus.Virology 209, 304-314.[CrossRef] [Google Scholar]
  42. Teifke, J. P., Löhr, C. V. & Shirasawa, H. (1998). Detection of canine oral papillomavirus-DNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization.Veterinary Microbiology 60, 119-130.[CrossRef] [Google Scholar]
  43. Wild, M. A., Cook, S. & Cochran, M. (1996). A genomic map of infectious laryngotracheitis virus and the sequence and organization of genes present in the unique short and flanking regions.Virus Genes 12, 107-116.[CrossRef] [Google Scholar]
  44. Williams, M. V., Holliday, J. & Glaser, R. (1985). Induction of a deoxyuridine triphosphate nucleotidohydrolase activity in Epstein–Barr virus-infected cells.Virology 142, 326-333.[CrossRef] [Google Scholar]
  45. Williams, R. A., Bennet, M., Bradbury, J. M., Gaskell, R. M., Jones, R. C. & Jordan, F. T. W. (1992). Demonstration of sites of latency of infectious laryngotracheitis virus using the polymerase chain reaction.Journal of General Virology 73, 2415-2420.[CrossRef] [Google Scholar]
  46. Wohlrab, F., Garrett, B. K. & Francke, B. (1982). Control of expression of the herpes simplex virus-induced deoxypyrimidine triphosphatase in cells infected with mutants of herpes simplex virus types 1 and 2 and intertypic recombinants.Journal of Virology 43, 935-942. [Google Scholar]
  47. Ziemann, K., Mettenleiter, T. C. & Fuchs, W. (1998a). Gene arrangement within the unique long genome region of infectious laryngotracheitis virus is distinct from that of other alphaherpesviruses.Journal of Virology 72, 847-852. [Google Scholar]
  48. Ziemann, K., Mettenleiter, T. C. & Fuchs, W. (1998b). Infectious laryngotracheitis herpesvirus expresses a related pair of unique nuclear proteins which are encoded by split genes located at the right end of the UL genome region.Journal of Virology 72, 6867-6874. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error