1887

Abstract

A full-length cDNA corresponding to the RNA genome of (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3′ end. protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-3-617
2000-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/3/0810617a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-3-617&mimeType=html&fmt=ahah

References

  1. Ashoub, A., Rohde, W. & Prüfer, D. ( 1998; ). In planta transcription of a second subgenomic RNA increases the complexity of the subgroup 2 luteovirus genome. Nucleic Acids Research 26, 420-426.[CrossRef]
    [Google Scholar]
  2. Bahner, I., Lamb, J., Mayo, M. A. & Hay, R. T. ( 1990; ). Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon. Journal of General Virology 71, 2251-2256.[CrossRef]
    [Google Scholar]
  3. Barker, H. & Solomon, R. M. ( 1980; ). Evidence of simple genetic control in potato of ability to restrict potato leafroll virus concentrations in leaves. Theoretical and Applied Genetics 80, 192-199.
    [Google Scholar]
  4. Baulcombe, D. C., Chapman, S. & Santa Cruz, S. ( 1995; ). Jellyfish green fluorescent protein as a reporter for virus infections. Plant Journal 7, 1045-1053.[CrossRef]
    [Google Scholar]
  5. Brault, V., Van den Heuvel, J. M., Verbeek, M., Ziegler-Graff, V., Ruetenauer, A., Herrbach, E., Garaud, J. C., Guilley, H., Richards, K. & Jonard, G. ( 1995; ). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal 14, 650-659.
    [Google Scholar]
  6. Bruyère, A. V., Brault, V., Ziegler-Graff, V., Simonis, M. T., Van den Huevel, J. F. J. M., Richards, K., Guilley, H., Jonard, G. & Herrbach, E. ( 1997; ). Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. Virology 230, 323-334.[CrossRef]
    [Google Scholar]
  7. Chapman, S., Kavanagh, T. & Baulcombe, D. C. ( 1992; ). Potato virus X as a vector for gene expression in plants. Plant Journal 2, 549-557.
    [Google Scholar]
  8. Chay, C. A., Gunasinge, U. B., Dinesh-Kumar, S. P., Miller, W. A. & Gray, S. M. ( 1996; ). Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219, 57-65.[CrossRef]
    [Google Scholar]
  9. Commandeur, U. & Martin, R. ( 1993; ). Investigations into the molecular biology of potato leafroll luteovirus by means of agroinfection. Phytopathology 83, 1426.
    [Google Scholar]
  10. Culver, J. N. ( 1996; ). Tobamovirus cross protection using a potexvirus vector. Virology 226, 228-235.[CrossRef]
    [Google Scholar]
  11. Dolja, V. V., Herndon, K. L., Pirone, T. P. & Carrington, J. C. ( 1993; ). Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. Journal of Virology 67, 5968-5975.
    [Google Scholar]
  12. Dolja, V. V., Hong, J., Keller, K. E., Martin, R. R. & Peremyslov, V. V. ( 1997; ). Suppression of potyvirus infection by coexpressed closterovirus protein. Virology 234, 243-252.[CrossRef]
    [Google Scholar]
  13. English, J. J., Davenport, G. F., Elmayan, T., Vaucheret, H. & Baulcombe, D. C. ( 1997; ). Requirement of sense transcription for homology-dependent virus resistance and trans-inactivation. Plant Journal 12, 597-603.[CrossRef]
    [Google Scholar]
  14. Franco-Lara, L. F., McGeachy, K. D., Commandeur, U., Martin, R. R., Mayo, M. A. & Barker, H. ( 1999; ). Transformation of tobacco and potato with cDNA encoding the full-length genome of Potato leafroll virus: Evidence for a novel virus distribution and host effects on virus multiplication. Journal of General Virology 80, 2813-2822.
    [Google Scholar]
  15. Gal-On, A., Kaplan, I. B., Roossink, M. J. & Palukaitis, P. ( 1994; ). The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function of RNA1 in virus movement. Virology 205, 280-289.[CrossRef]
    [Google Scholar]
  16. Gildow, F. E. ( 1999; ). Luteovirus transmission and mechanisms regulating vector-specificity. In The Luteoviridae, pp. 88-112. Edited by H. G. Smith & H. Barker. Wallingford: CAB International.
  17. Gildow, F. E., Reavy, B., Mayo, M. A., Woodford, T. & Duncan, G. H. ( 1997; ). Potato leafroll virus-like particles lacking readthrough protein are transmitted by Myzus persicae. Phytopathology 87, 33.[CrossRef]
    [Google Scholar]
  18. Imaizumi, S. & Kubo, S. ( 1980; ). Detection of tobacco necrotic dwarf virus antigen in plant tissues by fluorescent antibody staining. Annals of the Phytopathological Society of Japan 46, 54-56.[CrossRef]
    [Google Scholar]
  19. Jolly, C. A. & Mayo, M. A. ( 1994; ). Changes in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission. Virology 201, 182-185.[CrossRef]
    [Google Scholar]
  20. Leiser, R.-M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Lemaire, O., Guilley, H., Richard, K. & Jonard, G. ( 1992; ). Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proceedings of the National Academy of Sciences, USA 89, 9136-9140.[CrossRef]
    [Google Scholar]
  21. Mayo, M. A. & Ziegler-Graff, V. ( 1996; ). Molecular biology of luteoviruses. Advances in Virus Research 46, 416-460.
    [Google Scholar]
  22. Mutterer, J. D., Stussi-Garaud, C., Michler, P., Richards, K. E., Jonard, G. & Ziegler-Graff, V. ( 1999; ). Role of the beet western yellows virus readthrough protein in virus movement in Nicotiana clevelandii. Journal of General Virology 80, 2771-2778.
    [Google Scholar]
  23. Oparka, K. J., Roberts, A. G., Prior, D. A. M., Chapman, S., Baulcombe, D. C. & Santa Cruz, S. ( 1995; ). Imaging the green fluorescent protein in plants – viruses carry the torch. Protoplasma 189, 131-141.
    [Google Scholar]
  24. Oparka, K. J., Boevink, P. & Santa Cruz, S. ( 1996; ). Studying of the movement of plant viruses using green fluorescent protein. Trends in Plant Science 1, 412-417.[CrossRef]
    [Google Scholar]
  25. Pereira, L. G., Torrance, L., Roberts, I. M. & Harrison, B. D. ( 1994; ). Antigenic structure of the coat protein of potato mop-top furovirus. Virology 203, 277-285.[CrossRef]
    [Google Scholar]
  26. Power, J. B. & Chapman, J. V. ( 1985; ). Isolation, culture and genetic manipulation of plant protoplasts. In Plant Cell Culture, pp. 37-66. Edited by R. A. Dixon. Oxford: ICR Press.
  27. Roberts, I. M. (1986). Immunoelectron microscopy of extracts of virus-infected plants, pp. 293–357. In Electron Microscopy of Proteins. Edited by J. R. Harris & R. W. Horne. San Diego: Academic Press.
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Tacke, E., Schmitz, J., Prüfer, D. & Rohde, W. ( 1993; ). Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipatic α-helix as the domain for protein-protein interactions. Virology 197, 274-282.[CrossRef]
    [Google Scholar]
  30. Van den Heuvel, J. F. J. M., Bruyere, A., Hogenhout, S. A., Ziegler-Graff, V., Brault, V., Verbeek, M., Van Der Wilk, F. & Richards, K. ( 1997; ). The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. Journal of Virology 71, 7258-7265.
    [Google Scholar]
  31. Wang, J. Y., Chay, C. A., Gildow, F. E. & Gray, S. M. ( 1995; ). Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology 206, 954-962.[CrossRef]
    [Google Scholar]
  32. Ziegler-Graff, V., Brault, V., Mutterer, D., Simonis, M.-T., Herrbach, E., Guilley, H., Richards, K. E. & Jonard, G. ( 1996; ). The coat protein of beet western yellows luteovirus is essential for systemic infection but the viral gene products P29 and P19 are dispensable for systemic infection and aphid transmission. Molecular Plant–Microbe Interactions 9, 501-510.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-3-617
Loading
/content/journal/jgv/10.1099/0022-1317-81-3-617
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error