In the positive-stranded RNA genome of beet yellows closterovirus (BYV), the 5′-terminal ORF 1a encodes a 295 kDa polyprotein with the domains of papain-like cysteine proteinase, methyltransferase (MT) and helicase (HEL), whereas ORF 1b encodes an RNA-dependent RNA polymerase. Eleven and five hybridoma cell lines secreting monoclonal antibodies (MAbs) were derived from mice injected with the bacterially expressed fragments of the BYV 1a product encompassing the MT and HEL domains, respectively. On immunoblots of protein from BYV-infected plants, four MAbs against the MT recognized a ∼63 kDa protein, and two MAbs against the HEL recognized a ∼100 kDa protein. Both the methyltransferase-like protein and the helicase-like protein were found mainly in the fractions of large organelles (P1) and membranes (P30) of the infected plants. These data clearly indicate that (i) the BYV methyltransferase-like and helicase-like proteins, like other related viral enzymes, are associated with membrane compartments in cells, and (ii) the 1a protein, apart from the cleavage by the leader papain-like proteinase that is expected to produce the 66 kDa and 229 kDa fragments, undergoes additional processing by a virus-encoded or cellular proteinase.


Article metrics loading...

Loading full text...

Full text loading...



  1. Agranovsky, A. A. (1996). The principles of molecular organization, expression and evolution of closteroviruses: over the barriers. Advances in Virus Research 47, 119-158. [Google Scholar]
  2. Agranovsky, A. A., Koonin, E. V., Boyko, V. P., Maiss, E., Froetschl, R., Lunina, N. A. & Atabekov, J. G. (1994a). Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol protease. Virology 198, 311-324.[CrossRef] [Google Scholar]
  3. Agranovsky, A. A., Koenig, R., Maiss, E., Boyko, V. P., Casper, R. & Atabekov, J. G. (1994b). Expression of the beet yellows closterovirus capsid protein and p24, a capsid protein homologue, in vitro and in vivo. Journal of General Virology 75, 1431-1439.[CrossRef] [Google Scholar]
  4. Baron, M. H. & Baltimore, D. (1982). Antibodies against a synthetic peptide of the poliovirus replicase protein: reaction with native, virus-encoded proteins and inhibition of virus-specific polymerase activities in vitro. Journal of Virology 43, 969-978. [Google Scholar]
  5. Bransom, K. L. & Dreher, T. W. (1994). Identification of the essential cysteine and histidine residues of the turnip yellow mosaic virus protease. Virology 198, 148-154.[CrossRef] [Google Scholar]
  6. Coffin, R. S. & Coutts, R. H. A. (1993). The closteroviruses, capilloviruses and other similar viruses: a short review. Journal of General Virology 74, 1475-1483.[CrossRef] [Google Scholar]
  7. David, C., Gargouri-Bouzid, R. & Haenni, A.-L. (1992). RNA replication of plant viruses containing an RNA genome. Progress in Nucleic Acids Research and Molecular Biology 42, 157-227. [Google Scholar]
  8. Donald, R. G. K., Zhou, H. & Jackson, A. O. (1993). Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley.Virology 195, 659-668.[CrossRef] [Google Scholar]
  9. Dougherty, W. G. & Semler, B. L. (1993). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57, 781-822. [Google Scholar]
  10. Goldbach, R., Le Gall, O. & Wellink, J. (1991). Alpha-like viruses in plants.Seminars in Virology 2, 19-25. [Google Scholar]
  11. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. (1988). A conserved NTP-motif in putative helicases. Nature 333, 22. [Google Scholar]
  12. Hayes, R. J., Pereira, V. C. A., McQuillin, A. & Buck, K. W. (1994). Localization of functional regions of the cucumber mosaic virus RNA replicase using monoclonal and polyclonal antibodies. Journal of General Virology 75, 3177-3184.[CrossRef] [Google Scholar]
  13. Hehn, A., Fritsch, C., Richards, K. E., Guilley, H. & Jonard, G. (1997). Evidence for in vitro and in vivo autocatalytic processing of the primary translation product of beet necrotic yellow vein virus RNA 1 by a papain-like proteinase. Archives of Virology 142, 1051-1058.[CrossRef] [Google Scholar]
  14. Hills, G. J., Plaskitt, K. A., Young, N. D., Dunigan, D. D., Watts, J. W., Wilson, T. M. & Zaitlin, M. (1987). Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus proteins. Virology 161, 488-496.[CrossRef] [Google Scholar]
  15. Hochuli, E., Bannwath, W., Döbeli, H., Gentz, R. & Stüber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6, 1321-1325.[CrossRef] [Google Scholar]
  16. Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Yu. L. & Atabekov, J. G. (1997). A tobamovirus genome contains an internal ribosome entry site functional in vitro.Virology 232, 32-43.[CrossRef] [Google Scholar]
  17. Jelkmann, W., Fechtner, B. & Agranovsky, A. A. (1997). Complete genome structure and phylogenetic analysis of little cherry virus, a mealybug-transmissible closterovirus. Journal of General Virology 78, 2067-2071. [Google Scholar]
  18. Kamer, G. & Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses.Nucleic Acids Research 12, 7269-7283.[CrossRef] [Google Scholar]
  19. Karasev, A. V., Boyko, V. P., Gowda, S., Nikolaeva, O. N., Hilf, M. E., Koonin, E. V., Niblett, C. L., Cline, K. C., Gumpf, D. J., Lee, R. F., Garnsey, S. M., Lewandowski, D. J. & Dawson, W. O. (1995). Complete sequence of the citrus tristeza virus RNA genome. Virology 208, 511-520.[CrossRef] [Google Scholar]
  20. Klaassen, V. A., Boeshore, M., Koonin, E. V. & Falk, B. W. (1995). Genome structure and phylogenetic analysis of lettuce infectious yellows virus, a whitefly-transmitted, bipartite closterovirus. Virology 208, 99-110.[CrossRef] [Google Scholar]
  21. Klaassen, V. A., Mayhew, D., Fisher, D. & Falk, B. W. (1996).In vitro transcripts from cloned cDNAs of the lettuce infectious yellows closterovirus bipartite genomic RNAs are competent for replication in Nicotiana benthamiana protoplasts. Virology 222, 169-175.[CrossRef] [Google Scholar]
  22. Koonin, E. V. (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72, 2197-2206.[CrossRef] [Google Scholar]
  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27, 680-685. [Google Scholar]
  24. Lawrence, D. M., Rozanov, M. N. & Hillman, B. I. (1995). Autocatalytic processing of the 223-kDa protein of blueberry scorch carlavirus by a papain-like proteinase. Virology 207, 127-135.[CrossRef] [Google Scholar]
  25. Manabe, S., Fuke, I., Tanishita, O., Kaji, C., Gomi, Y., Yoshida, S., Mori, C., Takamizawa, A., Yosida, I. & Okayama, H. (1994). Production of nonstructural proteins of hepatitis C virus requires a putative viral protease encoded by NS3. Virology 198, 636-644.[CrossRef] [Google Scholar]
  26. Niesbach-Klosgen, U., Guilley, H., Jonard, G. & Richards, K. (1990). Immunodetection in vivo of beet necrotic yellow vein virus-encoded proteins. Virology 178, 52-61.[CrossRef] [Google Scholar]
  27. Peremyslov, V. V., Hagiwara, Y. & Dolja, V. V. (1998). Genes required for replication of the 15·5-kilobase RNA genome of a plant closterovirus. Journal of Virology 72, 5870-5876. [Google Scholar]
  28. Plechko, T. N., Kirillov, A. V., Ambrosova, S. M., Borisova, O. V. & Odinetz, A. G. (1991). Monoclonal antibodies in phytovirus diagnostics. Bioorganicheskaya Khimiya 17, 223-231. [Google Scholar]
  29. Rozanov, M. N., Koonin, E. V. & Gorbalenya, A. E. (1992). Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. Journal of General Virology 73, 2129-2134.[CrossRef] [Google Scholar]
  30. Scholthof, K. G., Scholthof, H. B. & Jackson, A. O. (1995). The tomato bushy stunt virus replicase proteins are coordinately expressed and membrane associated. Virology 208, 365-369.[CrossRef] [Google Scholar]
  31. Snijder, E. J. & Horzinek, M. C. (1993). Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. Journal of General Virology 74, 2305-2316.[CrossRef] [Google Scholar]
  32. Strauss, J. H. & Strauss, E. G. (1994). The alphaviruses: gene expression, replication and evolution. Microbiological Reviews 58, 491-562. [Google Scholar]
  33. ten Dam, E. B. (1995).Pseudoknot-dependent ribosomal frameshifting. Chapter 6, Shify stops: +1 frameshifting in the closterovirus cucumber chlorotic spot virus, pp. 93–106. PhD thesis, Leiden University, The Netherlands.
  34. Torrance, L. (1992). Serological methods to detect plant viruses: production and use of monoclonal antibodies. In Techniques for the Rapid Detection of Plant Pathogens, pp. 7-33. Edited by J. M. Duncan & L. Torrance. Oxford: Blackwell Scientific Publications.
  35. Van Etten, J. L., Freer, S. N. & McCune, B. K. (1979). Presence of a major (storage?) protein in dormant spores of the fungus Botryodiplodia theobromae. Journal of Bacteriology 138, 650-652. [Google Scholar]
  36. Zhu, H.-Y., Ling, K.-S., Goszczynski, D. E., McFerson, J. R. & Gonsalves, D. (1998). Nucleotide sequence and genome organization of grapevine leafroll-associated virus-2 are similar to beet yellows virus, the closterovirus type member. Journal of General Virology 79, 1289-1298. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error