A full-length genomic cDNA clone of a plum pox potyvirus (PPV) isolate belonging to the M strain (PPV-PS) has been cloned downstream from a bacteriophage T7 polymerase promoter and sequenced. Transcripts from the resulting plasmid, pGPPVPS, were infectious and, in herbaceous hosts, produced symptoms that differed from those of virus progeny of pGPPV, a full-length genomic cDNA clone of the D strain PPV-R. Viable PPV-R/-PS chimeric viruses were constructed by recombination of the cDNA clones . Analysis of plants infected with the different chimeras indicated that sequences encoding the most variable regions of the potyvirus genome, the P1 and capsid protein coding sequences, were not responsible for symptom differences between the two PPV isolates in herbaceous hosts. On the contrary, complex symptomatology determinants seem to be located in the central region of the PPV genome. The results indicate that a genomic fragment that encodes 173 aa from the C-terminal part of the P3+6K coding region is enough to confer, on a PPV-R background, a PS phenotype in . This pathogenicity determinant also participates in symptom induction in , although the region defining the PS phenotype in this host is probably restricted to 74 aa.


Article metrics loading...

Loading full text...

Full text loading...



  1. Aleman-Verdaguer, M.-E., Goudou-Urbino, C., Dubern, J., Beachy, R. N. & Fauquet, C. (1997). Analysis of the sequence diversity of the P1, HC, P3, NIb and CP genomic regions of several yam mosaic potyvirus isolates: implications for the intraspecies molecular diversity of potyviruses. Journal of General Virology 78, 1253-1264. [Google Scholar]
  2. Atreya, C. D., Atreya, P. L., Thornbury, D. W. & Pirone, T. P. (1992). Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology 191, 106-111.[CrossRef] [Google Scholar]
  3. Bousalem, M., Candresse, T., Quiot-Douine, L. & Quiot, J. B. (1994). Comparison of three methods for assessing plum pox virus variability: further evidence for the existence of two major groups of isolates. Journal of Phytopathology 142, 163-172.[CrossRef] [Google Scholar]
  4. Candresse, T., Cambra, M., Dallot, S., Lanneau, M., Asensio, M., Gorris, M. T., Revers, F., Macquaire, G., Olmos, A., Boscia, D., Quiot, J. B. & Dunez, J. (1998). Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology 88, 198-204.[CrossRef] [Google Scholar]
  5. Cervera, M. T., Riechmann, J. L., Martı́n, M. T. & Garcı́a, J. A. (1993). 3′-Terminal sequence of the plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. Journal of General Virology 74, 329-334.[CrossRef] [Google Scholar]
  6. Chu, M., Lopez-Moya, J. J., Llave-Correas, C. & Pirone, T. P. (1997). Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Molecular Plant-Microbe Interactions 10, 472-480.[CrossRef] [Google Scholar]
  7. Crescenzi, A., d’Aquino, L., Comes, S., Nuzzaci, M., Piazzolla, P., Boscia, D. & Hadidi, A. (1997). Characterization of the sweet cherry isolate of plum pox potyvirus. Plant Disease 81, 711-714.[CrossRef] [Google Scholar]
  8. Fichot, O. & Girard, M. (1990). An improved method for sequencing of RNA templates. Nucleic Acids Research 18, 6162.[CrossRef] [Google Scholar]
  9. Garcı́a, J. A., Martı́n, M. T., Cervera, M. T. & Riechmann, J. L. (1992). Proteolytic processing of the plum pox potyvirus polyprotein by the NIa protease at a novel cleavage site. Virology 188, 697-703.[CrossRef] [Google Scholar]
  10. Johansen, I. E., Dougherty, W. G., Keller, K. E., Wang, D. & Hampton, R. O. (1996). Multiple viral determinants affect seed transmission of pea seedborne mosaic virus in Pisum sativum. Journal of General Virology 77, 3149-3154.[CrossRef] [Google Scholar]
  11. Kerlan, C. & Dunez, J. (1979). Différenciation biologique et sérologique de souches du virus de la Sharka. Annales de Phytopathologie 11, 241-250. [Google Scholar]
  12. Klein, P. G., Klein, R. R., Rodrı́guez-Cerezo, E., Hunt, A. G. & Shaw, J. G. (1994). Mutational analysis of the tobacco vein mottling virus genome. Virology 204, 759-769.[CrossRef] [Google Scholar]
  13. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. (1987). Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology 154, 367-382. [Google Scholar]
  14. Laı́n, S., Riechmann, J. L., Méndez, E. & Garcı́a, J. A. (1988). Nucleotide sequence of the 3′ terminal region of plum pox potyvirus RNA. Virus Research 10, 325-342.[CrossRef] [Google Scholar]
  15. Laı́n, S., Riechmann, J. L. & Garcı́a, J. A. (1989). The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research 13, 157-172.[CrossRef] [Google Scholar]
  16. Langenberg, W. G. & Zhang, L. (1997). Immunocytology shows the presence of tobacco etch virus P3 protein in nuclear inclusions. Journal of Structural Biology 118, 243-247.[CrossRef] [Google Scholar]
  17. Maiss, E., Timpe, U., Brisske, A., Jelkmann, W., Casper, R., Himmler, G., Mattanovich, D. & Katinger, H. W. D. (1989). The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70, 513-524.[CrossRef] [Google Scholar]
  18. Maiss, E., Ivanova, L., Breyel, E. & Adam, G. (1991). Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus. Journal of General Virology 72, 461-464.[CrossRef] [Google Scholar]
  19. Maiss, E., Timpe, U., Brisske-Rode, A., Lesemann, D.-E. & Casper, R. (1992). Infectious in vivo transcripts of a plum pox potyvirus full-length cDNA clone containing the cauliflower mosaic virus 35S RNA promoter. Journal of General Virology 73, 709-713.[CrossRef] [Google Scholar]
  20. Nemchinov, L. & Hadidi, A. (1996). Characterization of the sour cherry strain of plum pox virus. Phytopathology 86, 575-580.[CrossRef] [Google Scholar]
  21. Palkovics, L., Burgyán, J. & Balázs, E. (1993). Comparative sequence analysis of four complete primary structures of plum pox virus strains. Virus Genes 7, 339-347.[CrossRef] [Google Scholar]
  22. Restrepo-Hartwig, M. A. & Carrington, J. C. (1994). The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. Journal of Virology 68, 2388-2397. [Google Scholar]
  23. Revers, F., Le Gall, O., Candresse, T. & Maule, A. J. (1999). New advances in understanding the molecular biology of plant/potyvirus interactions. Molecular Plant-Microbe Interactions 12, 367-376.[CrossRef] [Google Scholar]
  24. Riechmann, J. L., Laı́n, S. & Garcı́a, J. A. (1990). Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 177, 710-716.[CrossRef] [Google Scholar]
  25. Riechmann, J. L., Laı́n, S. & Garcı́a, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73, 1-16.[CrossRef] [Google Scholar]
  26. Riechmann, J. L., Cervera, M. T. & Garcı́a, J. A. (1995). Processing of the plum pox virus polyprotein at the P3–6K1 junction is not required for virus viability. Journal of General Virology 76, 951-956.[CrossRef] [Google Scholar]
  27. Rodrı́guez-Cerezo, E. & Shaw, J. G. (1991). Two newly detected nonstructural viral proteins in potyvirus-infected cells. Virology 185, 572-579.[CrossRef] [Google Scholar]
  28. Rodrı́guez-Cerezo, E., Klein, P. G. & Shaw, J. G. (1991). A determinant of disease symptom severity is located in the 3′-terminal noncoding region of the RNA of a plant virus. Proceedings of the National Academy of Sciences, USA 88, 9863-9867.[CrossRef] [Google Scholar]
  29. Rodrı́guez-Cerezo, E., Ammar, E. D., Pirone, T. P. & Shaw, J. G. (1993). Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. Journal of General Virology 74, 1945-1949.[CrossRef] [Google Scholar]
  30. Simón, L., Sáenz, P. & Garcı́a, J. A. (1997). Plum pox virus. In Filamentous Viruses of Woody Plants, pp. 75-86. Edited by P. Monnette. Trivandrum, India: Research Singspost.
  31. Simón-Buela, L., Guo, H. S. & Garcı́a, J. A. (1997). Long sequences in the 5′ noncoding region of plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. Virology 233, 157-162.[CrossRef] [Google Scholar]
  32. Sutic, D., Jordovic, M., Rankovic, M. & Festic, H. (1971). Comparative studies of some sharka (plum pox) virus isolates. Proceedings of the VIII Symposium sur les Maladies à Virus des Arbres Frutiers. Annales de Phytopathologie Hors Séries, 185–192.
  33. Teycheney, P. Y., Tavert, G., Delbos, R., Ravelonandro, M. & Dunez, J. (1989). The complete nucleotide sequence of plum pox virus RNA (strain D). Nucleic Acids Research 17, 10115-10116.[CrossRef] [Google Scholar]
  34. Van Oosten, H. J. (1971). Further information about the herbaceous host range of sharka (plum pox) virus. Proceedings of the VIII Symposium sur les Maladies à Virus des Arbres Frutiers. Annales de Phytopathologie Hors Séries, 195–201.
  35. Wetzel, T., Candresse, T., Ravelonandro, M., Delbos, R. P., Mazyad, H., Aboul-Ata, A. E. & Dunez, J. (1991). Nucleotide sequence of the 3′-terminal region of the RNA of the El Amar strain of plum pox potyvirus. Journal of General Virology 72, 1741-1746.[CrossRef] [Google Scholar]
  36. Wetzel, T., Candresse, T., Macquaire, G., Ravelonandro, M. & Dunez, J. (1992). A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection.Journal of Virological Methods 39, 27-37.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error