1887

Abstract

Transmissible gastroenteritis coronavirus (TGEV) agglutinates erythrocytes of several species by virtue of sialic acid binding activity of the surface protein S. We have isolated and characterized five haemagglutination-defective (HAD) mutants. In contrast to the parental virus, the mutants were unable to bind to porcine submandibulary mucin, a substrate rich in sialic acid. Each of the mutants was found to contain a single point mutation in the S protein (Cys155Phe, Met195Val, Arg196Ser, Asp208Asn or Leu209Pro), indicating that these amino acids are affecting the sialic acid binding site. In four of the HAD mutants a nearby antigenic site is affected in addition to the sialic acid binding site, as indicated by reactivity with monoclonal antibodies. The parental virus was found to have an increased resistance to the detergent octylglucoside compared to the HAD mutants. This effect depended on cellular sialoglycoconjugates bound to the virion. If the binding of sialylated macromolecules was prevented by neuraminidase treatment, the parental virus was as sensitive to octylglucoside as were the HAD mutants. We discuss the possibility that the sialic acid binding activity helps TGEV to resist detergent-like substances encountered during the gastrointestinal passage and thus facilitates the infection of the intestinal epithelium. An alternative function of the sialic acid binding activity – accessory binding to intestinal tissues – is also discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-489
2000-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810489a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-489&mimeType=html&fmt=ahah

References

  1. Ballesteros, M. L., Sánchez, C. M. & Enjuanes, L. (1997). Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism.Virology 227, 378-388.[CrossRef] [Google Scholar]
  2. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5.Science 275, 1320-1323.[CrossRef] [Google Scholar]
  3. Bernard, S. & Laude, H. (1995). Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity.Journal of General Virology 76, 2235-2241.[CrossRef] [Google Scholar]
  4. Cox, E., Pensaert, M. B., Callebaut, P. & van Deun, K. (1990). Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis.Veterinary Microbiology 23, 237-243.[CrossRef] [Google Scholar]
  5. Delmas, B., Gelfi, J. & Laude, H. (1986). Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein.Journal of General Virology 67, 1405-1418.[CrossRef] [Google Scholar]
  6. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Sjöström, H., Noren, O. & Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV.Nature 357, 417-420.[CrossRef] [Google Scholar]
  7. Gebauer, F., Posthumus, W. P., Correa, I., Suñé, C., Smerdou, C., Sánchez, C. M., Lenstra, J. A., Meloen, R. H. & Enjuanes, L. (1991). Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein.Virology 183, 225-238.[CrossRef] [Google Scholar]
  8. Hara, S., Yamaguchi, M., Furuhata, K., Ogura, H. & Nakamura, M. (1989). Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography.Analytical Biochemistry 179, 162-166.[CrossRef] [Google Scholar]
  9. Krempl, C., Schultze, B., Laude, H. & Herrler, G. (1997). Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.Journal of Virology 71, 3285-3287. [Google Scholar]
  10. Krempl, C., Ballesteros, M. L., Enjuanes, L. & Herrler, G. (1998). Isolation of haemagglutination-defective mutants for the analysis of the sialic acid binding activity of transmissible gastroenteritis virus.Advances in Experimental Medicine and Biology 440, 563-568. [Google Scholar]
  11. McClurkin, A. W. & Norman, J. O. (1966). Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis.Canadian Journal of Comparative Veterinary Science 30, 190-198. [Google Scholar]
  12. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family.Cell 87, 427-436.[CrossRef] [Google Scholar]
  13. Morrison, L. A. & Fields, B. N. (1991). Parallel mechanisms in neuropathogenesis of enteric virus infections.Journal of Virology 65, 2767-2772. [Google Scholar]
  14. Noda, M., Yamashita, H., Koide, F., Kadoi, K., Omori, T., Asagi, M. & Inaba, Y. (1987). Hemagglutination with transmissible gastroenteritis virus.Archives of Virology 96, 109-115.[CrossRef] [Google Scholar]
  15. Noda, M., Koide, F., Asagi, M. & Inaba, Y. (1988). Physicochemical properties of transmissible gastroenteritis virus hemagglutinin.Archives of Virology 99, 163-172.[CrossRef] [Google Scholar]
  16. Pensaert, M., Callebaut, P. & Cox, E. (1993). Enteric coronaviruses of animals. In Viral Infections of the Gastrointestinal Tract, pp. 627-696. Edited by A. Z. Kapikian. New York:Marcel Dekker.
  17. Rasschaert, D., Duarte, M. & Laude, H. (1990). Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions.Journal of General Virology 71, 2599-2607.[CrossRef] [Google Scholar]
  18. Reuter, G., Stoll, S., Kamerling, J. P., Vliegenthart, J. F. G. & Schauer, R. (1988). Sialic acids on erythrocytes and in blood plasma of mammals. In Sialic Acids 1988: Proceedings of the Japanese–German Symposium on Sialic Acids, pp. 88-89. Edited by R. Schauer & T. Yamakawa. Kiel, Germany:Kieler Verlag Wissenschaft und Bildung.
  19. Risco, C., Antón, I. M., Enjuanes, L. & Carrascosa, J. L. (1996). The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins.Journal of Virology 70, 4774-4777. [Google Scholar]
  20. Saif, L. J. (1990). Comparative aspects of enteric viral infections. In Viral Diarrheas of Man and Animals, pp. 9-31. Edited by L. J. Saif & K. W. Theil. Boca Raton, Florida:CRC Press.
  21. Sánchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C., Marı́a, J. B., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M. & Enjuanes, L. (1990). Antigenic homology among coronaviruses related to transmissible gastroenteritis virus.Virology 174, 410-417.[CrossRef] [Google Scholar]
  22. Sánchez, C. M., Gebauer, F., Suñé, C., Mendez, A., Dopazo, J. & Enjuanes, L. (1992). Genetic evolution and tropism of transmissible gastroenteritis coronaviruses.Virology 190, 92-105.[CrossRef] [Google Scholar]
  23. Sánchez, C. M., Izeta, A., Sanchez-Morgado, J. M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J. & Enjuanes, L. (1999). Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence.Journal of Virology 73, 7606-7618. [Google Scholar]
  24. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors.Proceedings of the National Academy of Sciences, USA 74, 5463-5467.[CrossRef] [Google Scholar]
  25. Schauer, R. (1982). Chemistry, metabolism, and biological functions of sialic acids.Advances in Carbohydrate Chemistry and Biochemistry 40, 131-234. [Google Scholar]
  26. Schultze, B., Gross, H.-J., Brossmer, R. & Herrler, G. (1991). The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant.Journal of Virology 65, 6232-6237. [Google Scholar]
  27. Schultze, B., Krempl, C., Ballesteros, M. L., Shaw, L., Schauer, R., Enjuanes, L. & Herrler, G. (1996). Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity.Journal of Virology 70, 5634-5637. [Google Scholar]
  28. Suñé, C., Jiménez, G., Correa, I., Bullido, M. J., Gebauer, F., Smerdou, C. & Enjuanes, L. (1990). Mechanisms of transmissible gastroenteritis coronavirus neutralization.Virology 177, 559-569.[CrossRef] [Google Scholar]
  29. Weiss, R. A. & Clapham, P. R. (1996). Hot fusion of HIV.Nature 381, 647-648.[CrossRef] [Google Scholar]
  30. Zimmern, D. & Kaesberg, P. (1978). 3′-Terminal nucleotide sequence of encephylomyocarditis virus RNA determined by reverse transcriptase and chain-terminating inhibitors.Proceedings of the National Academy of Sciences, USA 75, 4257-4261.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-489
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error