1887

Abstract

The expression of antigens or other molecules from recombinant vaccinia viruses requires the insertion of coding sequence at specific sites in the viral genome. Here we investigate the influence of two different sites on the level of protein expressed during a viral infection. The level of immune response in mice to vaccinia virus-expressed murine interleukin 2 (IL-2) or IL-4 varied depending on whether the coding sequence was inserted into the vaccinia virus thymidine kinase (tk) gene or into the dIII F fragment of the viral genome where herpes simplex virus (HSV) tk was used as a selectable marker. In each case the intensity of the response was greater when the relevant gene was expressed from the dIII F insertion site. In order to quantify these differences a series of recombinant viruses expressing luciferase was constructed. Luciferase activity from coding sequence inserted into the dIII F fragment was significantly higher than that from the tk gene insertion, provided HSV tk constructs were compared. Insertion of a marker gene (HSV tk) into the dIII F site with disruption of the F7L open reading frame led to a reduced level of luciferase expressed from the tk insert, despite more than 45 kb of intervening sequence. In mice, luciferase expression was higher from the dIII F inserted gene than from the tk insert in both lungs and ovaries.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-431
2000-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810431a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-431&mimeType=html&fmt=ahah

References

  1. Andrew, M. E. & Coupar, B. E. H. (1992). Biological effects of recombinant vaccinia virus-expressed interleukin 4. Cytokine 4, 281-286.[CrossRef] [Google Scholar]
  2. Andrew, M. E., Coupar, B. E. H., Ada, G. L. & Boyle, D. B. (1986). Cell-mediated immune responses to influenza virus antigens expressed by vaccinia virus recombinants. Microbial Pathogenesis 1, 443-452.[CrossRef] [Google Scholar]
  3. Andrew, M. E., Boyle, D. B., Coupar, B. E. H., Whitfeld, P. L., Both, G. W. & Bellamy, A. R. (1987). Vaccinia virus recombinants expressing the SA11 rotavirus VP7 glycoprotein gene induce serotype-specific neutralizing antibodies. Journal of Virology 61, 1054-1060. [Google Scholar]
  4. Andrew, M. E., Coupar, B. E. H. & Boyle, D. B. (1989). Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunology and Cell Biology 67, 331-337.[CrossRef] [Google Scholar]
  5. Bembridge, G. P., Lopez, J. A., Cook, R., Melero, J. A. & Taylor, G. (1998). Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. Journal of Virology 72, 4080-4087. [Google Scholar]
  6. Bennett, A. M., Lescott, T., Phillpotts, R. J., Mackett, M. & Titball, R. W. (1999). Recombinant vaccinia viruses protect against Clostridium perfringens α-toxin. Viral Immunology 12, 97-105.[CrossRef] [Google Scholar]
  7. Boyle, D. B., Coupar, B. E. H. & Both, G. W. (1985). Multiple cloning site plasmids for the rapid construction of recombinant poxviruses. Gene 35, 169-177.[CrossRef] [Google Scholar]
  8. Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. (1985). Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813-815.[CrossRef] [Google Scholar]
  9. Cameron, F. H. & Jennings, P. A. (1989). Specific gene suppression by engineered ribozymes in monkey cells. Proceedings of the National Academy of Sciences, USA 86, 9139-9143.[CrossRef] [Google Scholar]
  10. Coupar, B. E. H., Boyle, D. B. & Both, G. W. (1987). Effect of in vitro mutation in vaccinia virus early promoter region monitored by herpes simplex virus thymidine kinase expression in recombinant vaccinia virus. Journal of General Virology 68, 2299-2309.[CrossRef] [Google Scholar]
  11. Coupar, B. E. H., Andrew, M. E. & Boyle, D. B. (1988). A general method for the construction of recombinant vaccinia viruses expressing multiple foreign genes. Gene 68, 1-10.[CrossRef] [Google Scholar]
  12. Davison, A. J. & Moss, B. (1989). Structure of vaccinia virus early promoters. Journal of Molecular Biology 210, 749-769.[CrossRef] [Google Scholar]
  13. Flexner, C., Hugin, A. & Moss, B. (1987). Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature 330, 259-262.[CrossRef] [Google Scholar]
  14. Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P. & Paoletti, E. (1990). The complete DNA sequence of vaccinia virus. Virology 179, 247-266.[CrossRef] [Google Scholar]
  15. Karupiah, G., Coupar, B., Ramshaw, I., Boyle, D., Blanden, R. & Andrew, A. (1990). Vaccinia virus-mediated damage of murine ovaries and protection by virus-expressed interleukin-2. Immunology and Cell Biology 68, 325-333.[CrossRef] [Google Scholar]
  16. Kunke, D., Broucek, J., Kutinova, L., Nemeckova, S., Ludvikova, V., Strnad, I., Kramosil, J., Nemcova, J., Schramlova, J., Simonova, V. & Vonka, V. (1993). Vaccinia virus recombinants coexpressing hepatitis B virus surface and core antigens. Virology 195, 132-139.[CrossRef] [Google Scholar]
  17. Mackett, M., Smith, G. L. & Moss, B. (1984). General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49, 857-864. [Google Scholar]
  18. Morrison, H. G., Goldsmith, C. S., Regnery, H. L. & Auperin, D. D. (1990). Simultaneous expression of the Lassa virus N and GPC genes from a single recombinant vaccinia virus. Virus Research 18, 231-242. [Google Scholar]
  19. Moss, B. & Flexner, C. (1987). Vaccinia virus expression vectors. Annual Review of Immunology 5, 305-324.[CrossRef] [Google Scholar]
  20. Paoletti, E. (1990). Poxvirus recombinant vaccines. Annals of the New York Academy of Science 590, 309-325.[CrossRef] [Google Scholar]
  21. Perkus, M. E., Piccini, A., Lipinkas, B. R. & Paoletti, E. (1985). Recombinant vaccinia virus: immunization against multiple pathogens. Science 229, 981-984.[CrossRef] [Google Scholar]
  22. Ramshaw, I. A., Andrew, M. E., Phillips, S. M., Boyle, D. B. & Coupar, B. E. H. (1987). Immunodeficient mice recover from a vaccinia virus–IL2 recombinant infection. Nature 329, 545-546.[CrossRef] [Google Scholar]
  23. Rhim, J. S., Cho, H. Y. & Huebner, R. J. (1975). Non-producer human cells induced by murine sarcoma virus. International Journal of Cancer 15, 23-29.[CrossRef] [Google Scholar]
  24. Roseman, N. A. & Slabaugh, M. B. (1990). The vaccinia virus HindIII F fragment: nucleotide sequence of the left 6·2 kb. Virology 178, 410-418.[CrossRef] [Google Scholar]
  25. Smith, G. L. & Mackett, M. (1992). The design, construction and use of vaccinia virus recombinants. In Recombinant Poxviruses, pp. 81-122. Edited by M. M. Binns & G. L. Smith. Boca Raton, FL: CRC Press.
  26. Wild, T. F., Bernard, A., Spehner, D. & Drillien, R. (1992). Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. Journal of General Virology 73, 359-367.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-431
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error