We have shown that C57BL/6-derived CD8 CTL specific for an immunodominant herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) determinant express a highly conserved Vβ10/junctional sequence combination. This extreme T cell receptor β-chain bias can be used to track the activation of gB-specific CTL in lymph nodes draining the site of HSV-1 infection. In this report we have examined the accumulation of gB-specific CTL in the primary and secondary or recall CTL responses to HSV-1 infection. We found that gB-specific cytolytic activity present within popliteal lymph nodes draining HSV-infected foot-pads peaked at day 5 post-infection during the primary response. As found previously, this correlates with the accumulation of Vβ10CD8 CTL in the activated T cell subset. Lymph node-derived cytotoxicity peaked between days 3 and 4 on secondary challenge with virus and, somewhat surprisingly, was considerably below that seen in the primary response. This reduced gB-specific cytolytic activity mirrored a near absence of Vβ10CD8 T cell enrichment found within the draining lymph nodes during this recall response, consistent with the overall diminution of gB-specific CTL accumulation in this site. Finally, there was a second wave of biased accumulation of Vβ10CD8 activated T cells within the popliteal lymph nodes well after the resolution of infection in both the primary and secondary responses. These results are discussed in terms of preferential activation of virus-specific memory T cells directly in infected tissues during a secondary CTL response at the expense of draining lymphoid organs.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmed, R. (1992). Immunological memory against viruses. Seminars in Immunology 4, 105-109. [Google Scholar]
  2. Akbar, A. N., Terry, L., Timms, A., Beverley, P. C. & Janossy, G. (1988). Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. Journal of Immunology 140, 2171-2178. [Google Scholar]
  3. Altman, J. D., Moss, P. A. H., Goulder, P. J. R., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. & Davis, M. M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94-96.[CrossRef] [Google Scholar]
  4. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. (1997). Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. Journal of Experimental Medicine 186, 65-70.[CrossRef] [Google Scholar]
  5. Bonneau, R. H. & Jennings, S. R. (1989). Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity. Journal of Virology 63, 1480-1484. [Google Scholar]
  6. Bonneau, R. H., Salvucci, L. A., Johnson, D. C. & Tevethia, S. S. (1993). Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 195, 62-70.[CrossRef] [Google Scholar]
  7. Budd, R. C., Cerottini, J. C., Horvath, C., Bron, C., Pedrazzini, T., Howe, R. C. & MacDonald, H. R. (1987). Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. Journal of Immunology 138, 3120-3129. [Google Scholar]
  8. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. (1998). Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353-362.[CrossRef] [Google Scholar]
  9. Butcher, E. C. & Picker, L. J. (1996). Lymphocyte homing and homeostasis. Science 272, 60-66.[CrossRef] [Google Scholar]
  10. Butz, E. A. & Bevan, M. J. (1998). Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167-175.[CrossRef] [Google Scholar]
  11. Byrne, J. A., Butler, J. L. & Cooper, M. D. (1988). Differential activation requirements for virgin and memory T cells. Journal of Immunology 141, 3249-3257. [Google Scholar]
  12. Carbone, F. R., Kurts, C., Bennett, S. R. M., Miller, J. F. A. P. & Heath, W. R. (1998). Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunology Today 19, 368-373.[CrossRef] [Google Scholar]
  13. Cook, M. L. & Stevens, J. G. (1973). Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infection and Immunity 7, 272-288. [Google Scholar]
  14. Cose, S. C., Kelly, J. M. & Carbone, F. R. (1995). Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential Vβ bias. Journal of Virology 69, 5849-5852. [Google Scholar]
  15. Cose, S. C., Jones, C. M., Wallace, M. E., Heath, W. R. & Carbone, F. R. (1997). Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. European Journal of Immunology 27, 2310-2316.[CrossRef] [Google Scholar]
  16. Croft, M., Bradley, L. M. & Swain, S. L. (1994). Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. Journal of Immunology 152, 2675-2685. [Google Scholar]
  17. Doherty, P. C. (1998). The numbers game for virus-specific CD8+ T cells. Science 280, 227.[CrossRef] [Google Scholar]
  18. Doherty, P. C., Topham, D. J. & Tripp, R. A. (1996). Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunological Reviews 150, 23-44.[CrossRef] [Google Scholar]
  19. Dyall, R., Vasovic, L. V., Molano, A. & Nikolic-Zugic, J. (1995). CD4-independent in vivo priming of murine CTL by optimal MHC class I-restricted peptides derived from intracellular pathogens. International Immunology 7, 1205-1212.[CrossRef] [Google Scholar]
  20. Flynn, K. J., Belz, G. T., Altman, J. D., Ahmed, R., Woodland, D. L. & Doherty, P. C. (1998). Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683-691.[CrossRef] [Google Scholar]
  21. Hamann, A., Jablonski-Westrich, D., Scholz, K. U., Duijvestijn, A., Butcher, E. C. & Thiele, H. G. (1988). Regulation of lymphocyte homing. I. Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. Journal of Immunology 140, 737-743. [Google Scholar]
  22. Hanke, T., Graham, F. L., Rosenthal, K. L. & Johnson, D. C. (1991). Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. Journal of Virology 65, 1177-1186. [Google Scholar]
  23. Heath, W. R., Kurts, C., Miller, J. F. A. P. & Carbone, F. R. (1998). Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. Journal of Experimental Medicine 187, 1549-1553.[CrossRef] [Google Scholar]
  24. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. (1994). Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652-654.[CrossRef] [Google Scholar]
  25. Jung, T. M., Gallatin, W. M., Weissman, I. L. & Dailey, M. O. (1988). Down-regulation of homing receptors after T cell activation. Journal of Immunology 141, 4110-4117. [Google Scholar]
  26. Lalvani, A., Brookes, R., Hambleton, S., Britton, W. J., Hill, A. V. & McMichael, A. J. (1997). Rapid effector function in CD8+ memory T cells. Journal of Experimental Medicine 186, 859-865.[CrossRef] [Google Scholar]
  27. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. (1994). Cytotoxic T-cell memory without antigen. Nature 369, 648-652.[CrossRef] [Google Scholar]
  28. Lerner, A., Yamada, T. & Miller, R. A. (1989). Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. European Journal of Immunology 19, 977-982.[CrossRef] [Google Scholar]
  29. Luqman, M. & Bottomly, K. (1992). Activation requirements for CD4+ T cells differing in CD45R expression. Journal of Immunology 149, 2300-2306. [Google Scholar]
  30. McHeyzer-Williams, M. G. & Davis, M. M. (1995). Antigen-specific development of primary and memory T cells in vivo. Science 268, 106-111.[CrossRef] [Google Scholar]
  31. Mackay, C. R. (1991). T-cell memory: the connection between function, phenotype and migration pathways. Immunology Today 12, 189-192.[CrossRef] [Google Scholar]
  32. Mackay, C. R., Marston, W. L. & Dudler, L. (1990). Naive and memory T cells show distinct pathways of lymphocyte recirculation. Journal of Experimental Medicine 171, 801-817.[CrossRef] [Google Scholar]
  33. McKnight, A. J., Perez, V. L., Shea, C. M., Gray, G. S. & Abbas, A. K. (1994). Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. Journal of Immunology 152, 5220-5225. [Google Scholar]
  34. Maryanski, J. L., Jongeneel, C. V., Bucher, P., Casanova, J. L. & Walker, P. R. (1996). Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: a high magnitude CD8 response is comprised of very few clones. Immunity 4, 47-55.[CrossRef] [Google Scholar]
  35. Moskophidis, D., Assmann-Wischer, U., Simon, M. M. & Lehmann-Grube, F. (1987). The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. European Journal of Immunology 17, 937-942.[CrossRef] [Google Scholar]
  36. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. & Ahmed, R. (1998). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177-187.[CrossRef] [Google Scholar]
  37. Nash, A. A., Quartey-Papafio, R. & Wildy, P. (1980). Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells. Journal of General Virology 49, 309-317.[CrossRef] [Google Scholar]
  38. Nash, A. A., Jayasuriya, A., Phelan, J., Cobbold, S. P., Waldmann, H. & Prospero, T. (1987). Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. Journal of General Virology 68, 825-833.[CrossRef] [Google Scholar]
  39. Nugent, C. T., Wolcott, R. M., Chervenak, R. & Jennings, S. R. (1994). Analysis of the cytolytic T-lymphocyte response to herpes simplex virus type 1 glycoprotein B during primary and secondary infection. Journal of Virology 68, 7644-7648. [Google Scholar]
  40. Pfizenmaier, K., Starzinski-Powitz, A., Rollinghoff, M., Falks, D. & Wagner, H. (1977). T-cell-mediated cytotoxicity against herpes simplex virus-infected target cells. Nature 265, 630-632.[CrossRef] [Google Scholar]
  41. Razvi, E. S. & Welsh, R. M. (1995). Apoptosis in viral infections. Advances in Virus Research 45, 1-60. [Google Scholar]
  42. Ryser, J. E. & MacDonald, H. R. (1979). Limiting dilution analysis of alloantigen-reactive T lymphocytes. III. Effect of priming on precursor frequencies. Journal of Immunology 123, 128-132. [Google Scholar]
  43. Sanders, M. E., Makgoba, M. W., Sharrow, S. O., Stephany, D., Springer, T. A., Young, H. A. & Shaw, S. (1988). Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-γ production. Journal of Immunology 140, 1401-1407. [Google Scholar]
  44. Sanders, M. E., Makgoba, M. W., June, C. H., Young, H. A. & Shaw, S. (1989). Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. European Journal of Immunology 19, 803-808.[CrossRef] [Google Scholar]
  45. Simmons, A. & Tscharke, D. C. (1992). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system – implications for the fate of virally infected neurons. Journal of Experimental Medicine 175, 1337-1344.[CrossRef] [Google Scholar]
  46. Tripp, R. A., Hou, S. & Doherty, P. C. (1995). Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. Journal of Immunology 154, 5870-5875. [Google Scholar]
  47. Walker, P. R., Ohteki, T., Lopez, J. A., MacDonald, H. R. & Maryanski, J. L. (1995). Distinct phenotypes of antigen-selected CD8 T cells emerge at different stages of an in vivo immune response. Journal of Immunology 155, 3443-3452. [Google Scholar]
  48. Witmer, L. A., Rosenthal, K. L., Graham, F. L., Friedman, H. M., Yee, A. & Johnson, D. C. (1990). Cytotoxic T lymphocytes specific for herpes simplex virus (HSV) studied using adenovirus vectors expressing HSV glycoproteins. Journal of General Virology 71, 387-396.[CrossRef] [Google Scholar]
  49. Zimmerman, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M. & Pircher, H. (1996). Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. Journal of Experimental Medicine 183, 1367-1375.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error