1887

Abstract

We have shown that C57BL/6-derived CD8 CTL specific for an immunodominant herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) determinant express a highly conserved Vβ10/junctional sequence combination. This extreme T cell receptor β-chain bias can be used to track the activation of gB-specific CTL in lymph nodes draining the site of HSV-1 infection. In this report we have examined the accumulation of gB-specific CTL in the primary and secondary or recall CTL responses to HSV-1 infection. We found that gB-specific cytolytic activity present within popliteal lymph nodes draining HSV-infected foot-pads peaked at day 5 post-infection during the primary response. As found previously, this correlates with the accumulation of Vβ10CD8 CTL in the activated T cell subset. Lymph node-derived cytotoxicity peaked between days 3 and 4 on secondary challenge with virus and, somewhat surprisingly, was considerably below that seen in the primary response. This reduced gB-specific cytolytic activity mirrored a near absence of Vβ10CD8 T cell enrichment found within the draining lymph nodes during this recall response, consistent with the overall diminution of gB-specific CTL accumulation in this site. Finally, there was a second wave of biased accumulation of Vβ10CD8 activated T cells within the popliteal lymph nodes well after the resolution of infection in both the primary and secondary responses. These results are discussed in terms of preferential activation of virus-specific memory T cells directly in infected tissues during a secondary CTL response at the expense of draining lymphoid organs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-407
2000-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810407a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-407&mimeType=html&fmt=ahah

References

  1. Ahmed, R. (1992). Immunological memory against viruses. Seminars in Immunology 4, 105-109. [Google Scholar]
  2. Akbar, A. N., Terry, L., Timms, A., Beverley, P. C. & Janossy, G. (1988). Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. Journal of Immunology 140, 2171-2178. [Google Scholar]
  3. Altman, J. D., Moss, P. A. H., Goulder, P. J. R., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. & Davis, M. M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94-96.[CrossRef] [Google Scholar]
  4. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. (1997). Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. Journal of Experimental Medicine 186, 65-70.[CrossRef] [Google Scholar]
  5. Bonneau, R. H. & Jennings, S. R. (1989). Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity. Journal of Virology 63, 1480-1484. [Google Scholar]
  6. Bonneau, R. H., Salvucci, L. A., Johnson, D. C. & Tevethia, S. S. (1993). Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 195, 62-70.[CrossRef] [Google Scholar]
  7. Budd, R. C., Cerottini, J. C., Horvath, C., Bron, C., Pedrazzini, T., Howe, R. C. & MacDonald, H. R. (1987). Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. Journal of Immunology 138, 3120-3129. [Google Scholar]
  8. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. (1998). Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353-362.[CrossRef] [Google Scholar]
  9. Butcher, E. C. & Picker, L. J. (1996). Lymphocyte homing and homeostasis. Science 272, 60-66.[CrossRef] [Google Scholar]
  10. Butz, E. A. & Bevan, M. J. (1998). Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167-175.[CrossRef] [Google Scholar]
  11. Byrne, J. A., Butler, J. L. & Cooper, M. D. (1988). Differential activation requirements for virgin and memory T cells. Journal of Immunology 141, 3249-3257. [Google Scholar]
  12. Carbone, F. R., Kurts, C., Bennett, S. R. M., Miller, J. F. A. P. & Heath, W. R. (1998). Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunology Today 19, 368-373.[CrossRef] [Google Scholar]
  13. Cook, M. L. & Stevens, J. G. (1973). Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infection and Immunity 7, 272-288. [Google Scholar]
  14. Cose, S. C., Kelly, J. M. & Carbone, F. R. (1995). Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential Vβ bias. Journal of Virology 69, 5849-5852. [Google Scholar]
  15. Cose, S. C., Jones, C. M., Wallace, M. E., Heath, W. R. & Carbone, F. R. (1997). Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. European Journal of Immunology 27, 2310-2316.[CrossRef] [Google Scholar]
  16. Croft, M., Bradley, L. M. & Swain, S. L. (1994). Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. Journal of Immunology 152, 2675-2685. [Google Scholar]
  17. Doherty, P. C. (1998). The numbers game for virus-specific CD8+ T cells. Science 280, 227.[CrossRef] [Google Scholar]
  18. Doherty, P. C., Topham, D. J. & Tripp, R. A. (1996). Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunological Reviews 150, 23-44.[CrossRef] [Google Scholar]
  19. Dyall, R., Vasovic, L. V., Molano, A. & Nikolic-Zugic, J. (1995). CD4-independent in vivo priming of murine CTL by optimal MHC class I-restricted peptides derived from intracellular pathogens. International Immunology 7, 1205-1212.[CrossRef] [Google Scholar]
  20. Flynn, K. J., Belz, G. T., Altman, J. D., Ahmed, R., Woodland, D. L. & Doherty, P. C. (1998). Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683-691.[CrossRef] [Google Scholar]
  21. Hamann, A., Jablonski-Westrich, D., Scholz, K. U., Duijvestijn, A., Butcher, E. C. & Thiele, H. G. (1988). Regulation of lymphocyte homing. I. Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. Journal of Immunology 140, 737-743. [Google Scholar]
  22. Hanke, T., Graham, F. L., Rosenthal, K. L. & Johnson, D. C. (1991). Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. Journal of Virology 65, 1177-1186. [Google Scholar]
  23. Heath, W. R., Kurts, C., Miller, J. F. A. P. & Carbone, F. R. (1998). Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. Journal of Experimental Medicine 187, 1549-1553.[CrossRef] [Google Scholar]
  24. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. (1994). Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652-654.[CrossRef] [Google Scholar]
  25. Jung, T. M., Gallatin, W. M., Weissman, I. L. & Dailey, M. O. (1988). Down-regulation of homing receptors after T cell activation. Journal of Immunology 141, 4110-4117. [Google Scholar]
  26. Lalvani, A., Brookes, R., Hambleton, S., Britton, W. J., Hill, A. V. & McMichael, A. J. (1997). Rapid effector function in CD8+ memory T cells. Journal of Experimental Medicine 186, 859-865.[CrossRef] [Google Scholar]
  27. Lau, L. L., Jamieson, B. D., Somasundaram, T. & Ahmed, R. (1994). Cytotoxic T-cell memory without antigen. Nature 369, 648-652.[CrossRef] [Google Scholar]
  28. Lerner, A., Yamada, T. & Miller, R. A. (1989). Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. European Journal of Immunology 19, 977-982.[CrossRef] [Google Scholar]
  29. Luqman, M. & Bottomly, K. (1992). Activation requirements for CD4+ T cells differing in CD45R expression. Journal of Immunology 149, 2300-2306. [Google Scholar]
  30. McHeyzer-Williams, M. G. & Davis, M. M. (1995). Antigen-specific development of primary and memory T cells in vivo. Science 268, 106-111.[CrossRef] [Google Scholar]
  31. Mackay, C. R. (1991). T-cell memory: the connection between function, phenotype and migration pathways. Immunology Today 12, 189-192.[CrossRef] [Google Scholar]
  32. Mackay, C. R., Marston, W. L. & Dudler, L. (1990). Naive and memory T cells show distinct pathways of lymphocyte recirculation. Journal of Experimental Medicine 171, 801-817.[CrossRef] [Google Scholar]
  33. McKnight, A. J., Perez, V. L., Shea, C. M., Gray, G. S. & Abbas, A. K. (1994). Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. Journal of Immunology 152, 5220-5225. [Google Scholar]
  34. Maryanski, J. L., Jongeneel, C. V., Bucher, P., Casanova, J. L. & Walker, P. R. (1996). Single-cell PCR analysis of TCR repertoires selected by antigen in vivo: a high magnitude CD8 response is comprised of very few clones. Immunity 4, 47-55.[CrossRef] [Google Scholar]
  35. Moskophidis, D., Assmann-Wischer, U., Simon, M. M. & Lehmann-Grube, F. (1987). The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. European Journal of Immunology 17, 937-942.[CrossRef] [Google Scholar]
  36. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. & Ahmed, R. (1998). Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177-187.[CrossRef] [Google Scholar]
  37. Nash, A. A., Quartey-Papafio, R. & Wildy, P. (1980). Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells. Journal of General Virology 49, 309-317.[CrossRef] [Google Scholar]
  38. Nash, A. A., Jayasuriya, A., Phelan, J., Cobbold, S. P., Waldmann, H. & Prospero, T. (1987). Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. Journal of General Virology 68, 825-833.[CrossRef] [Google Scholar]
  39. Nugent, C. T., Wolcott, R. M., Chervenak, R. & Jennings, S. R. (1994). Analysis of the cytolytic T-lymphocyte response to herpes simplex virus type 1 glycoprotein B during primary and secondary infection. Journal of Virology 68, 7644-7648. [Google Scholar]
  40. Pfizenmaier, K., Starzinski-Powitz, A., Rollinghoff, M., Falks, D. & Wagner, H. (1977). T-cell-mediated cytotoxicity against herpes simplex virus-infected target cells. Nature 265, 630-632.[CrossRef] [Google Scholar]
  41. Razvi, E. S. & Welsh, R. M. (1995). Apoptosis in viral infections. Advances in Virus Research 45, 1-60. [Google Scholar]
  42. Ryser, J. E. & MacDonald, H. R. (1979). Limiting dilution analysis of alloantigen-reactive T lymphocytes. III. Effect of priming on precursor frequencies. Journal of Immunology 123, 128-132. [Google Scholar]
  43. Sanders, M. E., Makgoba, M. W., Sharrow, S. O., Stephany, D., Springer, T. A., Young, H. A. & Shaw, S. (1988). Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-γ production. Journal of Immunology 140, 1401-1407. [Google Scholar]
  44. Sanders, M. E., Makgoba, M. W., June, C. H., Young, H. A. & Shaw, S. (1989). Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. European Journal of Immunology 19, 803-808.[CrossRef] [Google Scholar]
  45. Simmons, A. & Tscharke, D. C. (1992). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system – implications for the fate of virally infected neurons. Journal of Experimental Medicine 175, 1337-1344.[CrossRef] [Google Scholar]
  46. Tripp, R. A., Hou, S. & Doherty, P. C. (1995). Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. Journal of Immunology 154, 5870-5875. [Google Scholar]
  47. Walker, P. R., Ohteki, T., Lopez, J. A., MacDonald, H. R. & Maryanski, J. L. (1995). Distinct phenotypes of antigen-selected CD8 T cells emerge at different stages of an in vivo immune response. Journal of Immunology 155, 3443-3452. [Google Scholar]
  48. Witmer, L. A., Rosenthal, K. L., Graham, F. L., Friedman, H. M., Yee, A. & Johnson, D. C. (1990). Cytotoxic T lymphocytes specific for herpes simplex virus (HSV) studied using adenovirus vectors expressing HSV glycoproteins. Journal of General Virology 71, 387-396.[CrossRef] [Google Scholar]
  49. Zimmerman, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M. & Pircher, H. (1996). Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. Journal of Experimental Medicine 183, 1367-1375.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-407
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error