1887

Abstract

The susceptibility of monocyte-derived immature dendritic cells (DC) to infection by various strains of human cytomegalovirus (HCMV) was analysed. Immature DC were generated by incubation of peripheral blood monocytes with interleukin-4 and granulocyte–macrophage colony-stimulating factor for 7 days and were characterized by a CD1a+/CD40+/CD80+/CD86+/HLA-DR+/CD14− phenotype. Viral antigen expression and production of infectious progeny virus were analysed in infected immature DC cultures. Immature DC were 80–90 % susceptible to HCMV strains that had been propagated in endothelial cell culture, whereas the infection rate was negligible with fibroblast-adapted HCMV strains. Immature DC infection resulted in expression of viral immediate early, early and late genes. Productive infection was proven by the detection of infectious virus in single-step growth curves and in infectious centre assays. It is concluded that HCMV might interfere with the host immune reaction by permissive, lytic infection of immature DC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-393
2000-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810393a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-393&mimeType=html&fmt=ahah

References

  1. Ahn, K., Angulo, A., Ghazal, P., Peterson, P. A., Yang, Y. & Fruh, K. (1996). Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proceedings of the National Academy of Sciences, USA 93, 10990-10995.[CrossRef] [Google Scholar]
  2. Bender, A., Albert, M., Reddy, A., Feldman, M., Sauter, B., Kaplan, G., Hellman, W. & Bhardwaj, N. (1998). The distinctive features of influenza virus infection of dendritic cells. Immunobiology 198, 552-567.[CrossRef] [Google Scholar]
  3. Bhardwaj, N., Bender, A., Gonzalez, N., Bui, L. K., Garrett, M. C. & Steinman, R. M. (1994). Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. Journal of Clinical Investigation 94, 797-807.[CrossRef] [Google Scholar]
  4. Brossart, P. & Bevan, M. J. (1997). Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90, 1594-1599. [Google Scholar]
  5. Brossart, P., Goldrath, A. W., Butz, E. A., Martin, S. & Bevan, M. J. (1997). Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. Journal of Immunology 158, 3270-3276. [Google Scholar]
  6. Brossart, P., Grunebach, F., Stuhler, G., Reichardt, V. L., Mohle, R., Kanz, L. & Brugger, W. (1998). Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood 92, 4238-4247. [Google Scholar]
  7. Canque, B., Rosenzwajg, M., Camus, S., Yagello, M., Bonnet, M. L., Guigon, M. & Gluckman, J. C. (1996). The effect of in vitro human immunodeficiency virus infection on dendritic-cell differentiation and function. Blood 88, 4215-4228. [Google Scholar]
  8. Cella, M., Sallusto, F. & Lanzavecchia, A. (1997). Origin, maturation and antigen presenting function of dendritic cells. Current Opinion in Immunology 9, 10-16.[CrossRef] [Google Scholar]
  9. Cha, T. A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S. & Spaete, R. R. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. Journal of Virology 70, 78-83. [Google Scholar]
  10. Einsele, H., Ehninger, G., Steidle, M., Fischer, I., Bihler, S., Gerneth, F., Vallbracht, A., Schmidt, H., Waller, H. D. & Muller, C. A. (1993). Lymphocytopenia as an unfavorable prognostic factor in patients with cytomegalovirus infection after bone marrow transplantation. Blood 82, 1672-1678. [Google Scholar]
  11. Fruh, K., Ahn, K. & Peterson, P. A. (1997). Inhibition of MHC class I antigen presentation by viral proteins. Journal of Molecular Medicine 75, 18-27.[CrossRef] [Google Scholar]
  12. Fugier Vivier, I., Servet Delprat, C., Rivailler, P., Rissoan, M. C., Liu, Y. J. & Rabourdin Combe, C. (1997). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. Journal of Experimental Medicine 186, 813-823.[CrossRef] [Google Scholar]
  13. Grosjean, I., Caux, C., Bella, C., Berger, I., Wild, F., Banchereau, J. & Kaiserlian, D. (1997). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. Journal of Experimental Medicine 186, 801-812.[CrossRef] [Google Scholar]
  14. Hahn, G., Jores, R. & Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proceedings of the National Academy of Sciences, USA 95, 3937-3942.[CrossRef] [Google Scholar]
  15. Hart, D. N. (1997). Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245-3287. [Google Scholar]
  16. Hengel, H., Esslinger, C., Pool, J., Goulmy, E. & Koszinowski, U. H. (1995). Cytokines restore MHC class I complex formation and control antigen presentation in human cytomegalovirus-infected cells. Journal of General Virology 76, 2987-2997.[CrossRef] [Google Scholar]
  17. Hengel, H., Flohr, T., Hammerling, G. J., Koszinowski, U. H. & Momburg, F. (1996). Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. Journal of General Virology 77, 2287-2296.[CrossRef] [Google Scholar]
  18. Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C. & Nelson, J. A. (1991). Human cytomegalovirus productively infects primary differentiated macrophages. Journal of Virology 65, 6581-6588. [Google Scholar]
  19. Jones, T. R., Wiertz, E. J., Sun, L., Fish, K. N., Nelson, J. A. & Ploegh, H. L. (1996). Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences, USA 93, 11327-11333.[CrossRef] [Google Scholar]
  20. Kacani, L., Frank, I., Spruth, M., Schwendinger, M. G., Mullauer, B., Sprinzl, G. M., Steindl, F. & Dierich, M. P. (1998). Dendritic cells transmit human immunodeficiency virus type 1 to monocytes and monocyte-derived macrophages. Journal of Virology 72, 6671-6677. [Google Scholar]
  21. Kaiserlian, D., Grosjean, I. & Caux, C. (1997). Infection of human dendritic cells by measles virus induces immune suppression. Advances in Experimental Medicine and Biology 417, 421-423. [Google Scholar]
  22. Kemble, G., Duke, G., Winter, R. & Spaete, R. (1996). Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. Journal of Virology 70, 2044-2048. [Google Scholar]
  23. Klagge, I. M. & Schneider-Schaulies, S. (1999). Virus interactions with dendritic cells. Journal of General Virology 80, 823-833. [Google Scholar]
  24. Lathey, J. L. & Spector, S. A. (1991). Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. Journal of Virology 65, 6371-6375. [Google Scholar]
  25. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P. (1997). The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proceedings of the National Academy of Sciences, USA 94, 6904-6909.[CrossRef] [Google Scholar]
  26. Machold, R. P., Wiertz, E. J., Jones, T. R. & Ploegh, H. L. (1997). The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. Journal of Experimental Medicine 185, 363-366.[CrossRef] [Google Scholar]
  27. Miller, D. M., Rahill, B. M., Boss, J. M., Lairmore, M. D., Durbin, J. E., Waldman, J. W. & Sedmak, D. D. (1998). Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. Journal of Experimental Medicine 187, 675-683.[CrossRef] [Google Scholar]
  28. Minton, E. J., Tysoe, C., Sinclair, J. H. & Sissons, J. G. (1994). Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow. Journal of Virology 68, 4017-4021. [Google Scholar]
  29. Sallusto, F. & Lanzavecchia, A. (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. Journal of Experimental Medicine 179, 1109-1118.[CrossRef] [Google Scholar]
  30. Schnorr, J. J., Xanthakos, S., Keikavoussi, P., Kampgen, E., ter Meulen, V. & Schneider Schaulies, S. (1997). Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proceedings of the National Academy of Sciences, USA 94, 5326-5331.[CrossRef] [Google Scholar]
  31. Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H. & Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. Journal of General Virology 76, 741-750.[CrossRef] [Google Scholar]
  32. Sinzger, C., Plachter, B., Grefte, A., The, T. H. & Jahn, G. (1996). Tissue macrophages are infected by human cytomegalovirus in vivo. Journal of Infectious Diseases 173, 240-245.[CrossRef] [Google Scholar]
  33. Sinzger, C., Knapp, J., Plachter, B., Schmidt, K. & Jahn, G. (1997). Quantification of replication of clinical cytomegalovirus isolates in cultured endothelial cells and fibroblasts by a focus expansion assay. Journal of Virological Methods 63, 103-112.[CrossRef] [Google Scholar]
  34. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. (1998). Growth of human cytomegalovirus in primary macrophages. Methods 16, 126-138.[CrossRef] [Google Scholar]
  35. Steinmassl, M. & Hamprecht, K. (1994). Double fluorescence analysis of human cytomegalovirus (HCMV) infected human fibroblast cultures by flow cytometry: increase of class I MHC expression on uninfected cells and decrease on infected cells. Archives of Virology 135, 75-87.[CrossRef] [Google Scholar]
  36. Torok Storb, B., Fries, B., Stachel, D. & Khaira, D. (1993). Cytomegalovirus: variations in tropism and disease. Leukemia 7, S83-85. [Google Scholar]
  37. Waldman, W. J., Roberts, W. H., Davis, D. H., Williams, M. V., Sedmak, D. D. & Stephens, R. E. (1991). Preservation of natural endothelial cytopathogenicity of cytomegalovirus by propagation in endothelial cells. Archives of Virology 117, 143-164.[CrossRef] [Google Scholar]
  38. Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J. & Ploegh, H. L. (1996). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769-779.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-393
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-393
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error