1887

Abstract

The two sister cytomegaloviruses (CMVs), human and murine CMV, have both evolved immune evasion functions that interfere with the major histocompatibility complex class I (MHC-I) pathway of antigen processing and presentation and are effectual in the early (E) phase of virus gene expression. However, studies on murine CMV have shown that E-phase immune evasion is leaky. An E-phase protein involved in immune evasion, namely -gp34, was found to simultaneously account for an antigenic peptide presented by the MHC-I molecule D. Recent work has demonstrated the induction of protective immunity specific for the E-phase protein -p65, one of two murine CMV homologues of the human CMV matrix protein -pp65. In this study, the identification of the MHC-I K-restricted M84 peptide AYAGLFTPL is documented. This peptide is the third antigenic peptide described for murine CMV and the second that escapes immunosubversive mechanisms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-3037
2000-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0813037a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-3037&mimeType=html&fmt=ahah

References

  1. Azuma, M., Cayabyab, M., Buck, D., Philipps, J. H. & Lanier, L. L. ( 1992; ). CD28 interaction with B7 co-stimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. Journal of Experimental Medicine 175, 353-360.[CrossRef]
    [Google Scholar]
  2. Boppana, S. B. & Britt, W. J. ( 1996; ). Recognition of human cytomegalovirus gene products by HCMV-specific cytotoxic T cells. Virology 222, 293-296.[CrossRef]
    [Google Scholar]
  3. Borysiewicz, L. K., Hickling, J. K., Graham, S., Sinclair, J., Cranage, M. P., Smith, G. L. & Sissons, J. G. P. ( 1988; ). Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kDa immediate-early protein and glycoprotein B expressed by recombinant vaccinia viruses. Journal of Experimental Medicine 168, 919-931.[CrossRef]
    [Google Scholar]
  4. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchinson, C. A.III, Kouzarides, T., Martignetti, J. A., Preddie, E., Satchwell, S. C., Tomlinson, P., Weston, K. M. & Barrell, B. G. ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology 154, 125-169.
    [Google Scholar]
  5. Cranmer, L. D., Clark, C. L., Morello, C. S., Farrell, E. H., Rawlinson, W. D. & Spector, D. H. ( 1996; ). Identification, analysis, and evolutionary relationships of the putative murine cytomegalovirus homologs of the human cytomegalovirus UL82 (pp71) and UL83 (pp65) matrix phosphoproteins. Journal of Virology 70, 7929-7939.
    [Google Scholar]
  6. Del Val, M., Schlicht, H.-J., Ruppert, T., Reddehase, M. J. & Koszinowski, U. H. ( 1991a; ). Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66, 1145-1153.[CrossRef]
    [Google Scholar]
  7. Del Val, M., Schlicht, H.-J., Volkmer, H., Messerle, M., Reddehase, M. J. & Koszinowski, U. H. ( 1991b; ). Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. Journal of Virology 65, 3641-3646.
    [Google Scholar]
  8. Eggers, M., Boes-Fabian, B., Ruppert, T., Kloetzel, P. M. & Koszinowski, U. H. ( 1995; ). The cleavage preference of the proteasome governs the yield of antigenic peptides. Journal of Experimental Medicine 182, 1865-1870.[CrossRef]
    [Google Scholar]
  9. Falk, K., Rötzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.-G. ( 1991; ). Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290-296.[CrossRef]
    [Google Scholar]
  10. Gonzales Armas, J. C., Morello, C. S., Cranmer, L. D. & Spector, D. H. ( 1996; ). DNA immunization confers protection against murine cytomegalovirus infection. Journal of Virology 70, 7921-7928.
    [Google Scholar]
  11. Hengel, H., Brune, W. & Koszinowski, U. H. ( 1998; ). Immune evasion by cytomegalovirus – survival strategies of a highly adapted opportunist. Trends in Microbiology 6, 190-197.[CrossRef]
    [Google Scholar]
  12. Holtappels, R., Podlech, J., Geginat, G., Steffens, H.-P., Thomas, D. & Reddehase, M. J. ( 1998; ). Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. Journal of Virology 72, 7201-7212.
    [Google Scholar]
  13. Holtappels, R., Thomas, D., Podlech, J., Geginat, G., Steffens, H.-P. & Reddehase, M. J. ( 2000; ). The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. Journal of Virology 74, 1871-1884.[CrossRef]
    [Google Scholar]
  14. Kern, F., Surel, I. P., Faulhaber, N., Frömmel, C., Schneider-Mergener, J., Schönemann, C., Reinke, P. & Volk, H.-D. ( 1999; ). Target structures of the CD8+ T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. Journal of Virology 73, 8179-8184.
    [Google Scholar]
  15. Kleijnen, M. F., Huppa, J. B., Lucin, P., Mukherjee, S., Farrell, H. E., Campbell, A. E., Koszinowski, U. H., Hill, A. B. & Ploegh, H. L. ( 1997; ). A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO Journal 16, 685-694.[CrossRef]
    [Google Scholar]
  16. McLaughlin-Taylor, E., Pande, H., Forman, S. J., Tanamachi, B., Li, C. R., Zaia, J. A., Greenberg, P. D. & Riddell, S. R. ( 1994; ). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. Journal of Medical Virology 43, 103-110.[CrossRef]
    [Google Scholar]
  17. Morello, C. S., Cranmer, L. D. & Spector, D. H. ( 1999; ). In vivo replication, latency, and immunogenicity of murine cytomegalovirus mutants with deletions in the M83 and M84 genes, the putative homologs of human cytomegalovirus pp65 (UL83). Journal of Virology 73, 7678-7693.
    [Google Scholar]
  18. Morello, C. S., Cranmer, L. D. & Spector, D. H. ( 2000; ). Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). Journal of Virology 74, 3696-3708.[CrossRef]
    [Google Scholar]
  19. Rammensee, H.-G., Bachmann, J. & Stevanovic, S. (1997). MHC ligands and peptide motifs. Molecular Biology Intelligence Unit, Landes Bioscience, Austin, TX, USA.
  20. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. ( 1996; ). Analysis of the complete DNA sequence of murine cytomegalovirus. Journal of Virology 70, 8833-8849.
    [Google Scholar]
  21. Reddehase, M. J. ( 2000; ). The immunogenicity of human and murine cytomegaloviruses. Current Opinion in Immunology 12, 390-396.[CrossRef]
    [Google Scholar]
  22. Reddehase, M. J., Rothbard, J. B. & Koszinowski, U. H. ( 1989; ). A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337, 651-653.[CrossRef]
    [Google Scholar]
  23. Retiere, C., Prod’homme, V., Imbert-Marcille, B. M., Bonneville, M., Vie, H. & Hallet, M. M. ( 2000; ). Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response. Journal of Virology 74, 3948-3952.[CrossRef]
    [Google Scholar]
  24. Utz, U., Koenig, S., Coligan, J. E. & Biddison, W. E. ( 1992; ). Presentation of three different viral peptides, HTLV Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. Journal of Immunology 149, 214-221.
    [Google Scholar]
  25. Wills, M. R., Carmichael, A. J., Mynard, K., Jin, X., Weekes, M. P., Plachter, B. & Sissons, J. G. P. ( 1996; ). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. Journal of Virology 70, 7569-7579.
    [Google Scholar]
  26. Ziegler, H., Thäle, R., Lucin, P., Muranyi, W., Flohr, T., Hengel, H., Farrell, H., Rawlinson, W. & Koszinowski, U. H. ( 1997; ). A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57-66.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-3037
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-3037
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error