1887

Abstract

The two sister cytomegaloviruses (CMVs), human and murine CMV, have both evolved immune evasion functions that interfere with the major histocompatibility complex class I (MHC-I) pathway of antigen processing and presentation and are effectual in the early (E) phase of virus gene expression. However, studies on murine CMV have shown that E-phase immune evasion is leaky. An E-phase protein involved in immune evasion, namely -gp34, was found to simultaneously account for an antigenic peptide presented by the MHC-I molecule D. Recent work has demonstrated the induction of protective immunity specific for the E-phase protein -p65, one of two murine CMV homologues of the human CMV matrix protein -pp65. In this study, the identification of the MHC-I K-restricted M84 peptide AYAGLFTPL is documented. This peptide is the third antigenic peptide described for murine CMV and the second that escapes immunosubversive mechanisms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-3037
2000-12-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0813037a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-3037&mimeType=html&fmt=ahah

References

  1. Azuma M., Cayabyab M., Buck D., Philipps J. H., Lanier L. L.. 1992; CD28 interaction with B7 co-stimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. Journal of Experimental Medicine175:353–360
    [Google Scholar]
  2. Boppana S. B., Britt W. J.. 1996; Recognition of human cytomegalovirus gene products by HCMV-specific cytotoxic T cells. Virology222:293–296
    [Google Scholar]
  3. Borysiewicz L. K., Hickling J. K., Graham S., Sinclair J., Cranage M. P., Smith G. L., Sissons J. G. P.. 1988; Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kDa immediate-early protein and glycoprotein B expressed by recombinant vaccinia viruses. Journal of Experimental Medicine168:919–931
    [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchinson C. A.III., Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G.. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Current Topics in Microbiology and Immunology154:125–169
    [Google Scholar]
  5. Cranmer L. D., Clark C. L., Morello C. S., Farrell E. H., Rawlinson W. D., Spector D. H.. 1996; Identification, analysis, and evolutionary relationships of the putative murine cytomegalovirus homologs of the human cytomegalovirus UL82 (pp71) and UL83 (pp65) matrix phosphoproteins. Journal of Virology70:7929–7939
    [Google Scholar]
  6. Del Val M., Schlicht H.-J., Ruppert T., Reddehase M. J., Koszinowski U. H.. 1991a; Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell66:1145–1153
    [Google Scholar]
  7. Del Val M., Schlicht H.-J., Volkmer H., Messerle M., Reddehase M. J., Koszinowski U. H.. 1991b; Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. Journal of Virology65:3641–3646
    [Google Scholar]
  8. Eggers M., Boes-Fabian B., Ruppert T., Kloetzel P. M., Koszinowski U. H.. 1995; The cleavage preference of the proteasome governs the yield of antigenic peptides. Journal of Experimental Medicine182:1865–1870
    [Google Scholar]
  9. Falk K., Rötzschke O., Stevanovic S., Jung G., Rammensee H.-G.. 1991; Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature351:290–296
    [Google Scholar]
  10. Gonzales Armas J. C., Morello C. S., Cranmer L. D., Spector D. H.. 1996; DNA immunization confers protection against murine cytomegalovirus infection. Journal of Virology70:7921–7928
    [Google Scholar]
  11. Hengel H., Brune W., Koszinowski U. H.. 1998; Immune evasion by cytomegalovirus – survival strategies of a highly adapted opportunist. Trends in Microbiology6:190–197
    [Google Scholar]
  12. Holtappels R., Podlech J., Geginat G., Steffens H.-P., Thomas D., Reddehase M. J.. 1998; Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. Journal of Virology72:7201–7212
    [Google Scholar]
  13. Holtappels R., Thomas D., Podlech J., Geginat G., Steffens H.-P., Reddehase M. J.. 2000; The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. Journal of Virology74:1871–1884
    [Google Scholar]
  14. Kern F., Surel I. P., Faulhaber N., Frömmel C., Schneider-Mergener J., Schönemann C., Reinke P., Volk H.-D.. 1999; Target structures of the CD8+ T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. Journal of Virology73:8179–8184
    [Google Scholar]
  15. Kleijnen M. F., Huppa J. B., Lucin P., Mukherjee S., Farrell H. E., Campbell A. E., Koszinowski U. H., Hill A. B., Ploegh H. L.. 1997; A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO Journal16:685–694
    [Google Scholar]
  16. McLaughlin-Taylor E., Pande H., Forman S. J., Tanamachi B., Li C. R., Zaia J. A., Greenberg P. D., Riddell S. R.. 1994; Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. Journal of Medical Virology43:103–110
    [Google Scholar]
  17. Morello C. S., Cranmer L. D., Spector D. H.. 1999; In vivo replication, latency, and immunogenicity of murine cytomegalovirus mutants with deletions in the M83 and M84 genes, the putative homologs of human cytomegalovirus pp65 (UL83. Journal of Virology73:7678–7693
    [Google Scholar]
  18. Morello C. S., Cranmer L. D., Spector D. H.. 2000; Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). Journal of Virology74:3696–3708
    [Google Scholar]
  19. Rammensee H.-G., Bachmann J., Stevanovic S.. 1997; MHC ligands and peptide motifs. Molecular Biology Intelligence Unit Landes Bioscience, Austin, TX, USA:
    [Google Scholar]
  20. Rawlinson W. D., Farrell H. E., Barrell B. G.. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. Journal of Virology70:8833–8849
    [Google Scholar]
  21. Reddehase M. J.. 2000; The immunogenicity of human and murine cytomegaloviruses. Current Opinion in Immunology12:390–396
    [Google Scholar]
  22. Reddehase M. J., Rothbard J. B., Koszinowski U. H.. 1989; A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature337:651–653
    [Google Scholar]
  23. Retiere C., Prod’homme V., Imbert-Marcille B. M., Bonneville M., Vie H., Hallet M. M.. 2000; Generation of cytomegalovirus-specific human T-lymphocyte clones by using autologous B-lymphoblastoid cells with stable expression of pp65 or IE1 proteins: a tool to study the fine specificity of the antiviral response. Journal of Virology74:3948–3952
    [Google Scholar]
  24. Utz U., Koenig S., Coligan J. E., Biddison W. E.. 1992; Presentation of three different viral peptides, HTLV Tax, HCMV gB, and influenza virus M1, is determined by common structural features of the HLA-A2.1 molecule. Journal of Immunology149:214–221
    [Google Scholar]
  25. Wills M. R., Carmichael A. J., Mynard K., Jin X., Weekes M. P., Plachter B., Sissons J. G. P.. 1996; The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. Journal of Virology70:7569–7579
    [Google Scholar]
  26. Ziegler H., Thäle R., Lucin P., Muranyi W., Flohr T., Hengel H., Farrell H., Rawlinson W., Koszinowski U. H.. 1997; A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity6:57–66
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-3037
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-3037
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error