1887

Abstract

Human papillomavirus type 16 (HPV-16) is the predominant HPV isolate found in malignancies of male and female lower genital tracts. However, only a small percentage of individuals infected with high-risk HPVs develop a genital neoplasia, suggesting that additional events at both the cellular and the virus level are necessary for the progression to cancer, including genetic mutations/rearrangements of viral sequences involved in the oncogenic process. In this study, the genetic stability of the long control region (LCR) (nt 7289–114), which regulates expression levels of oncoproteins E6 and E7, was analysed in HPV-16 isolates from penile carcinoma (PC) biopsies of patients recruited from Uganda, one of the countries with the highest incidence of genital cancers in both men and women. Nucleotide changes within the LCR region typical of the African-1 (Af-1) lineage were observed in all HPV-16 isolates. Two out of five samples showed further rearrangements of the enhancer region. The functional activity of LCR with Af-1 mutations and/or rearrangements was evaluated by cloning each LCR into CAT expression vectors, followed by transfection in several epithelial and non-epithelial cell lines. CAT expression levels driven by a rearranged LCR were significantly higher than those driven by Af-1 or European prototype LCRs. Furthermore, in the NIH3T3 focus formation assay, the transforming activity of E6 and E7 genes, driven by a mutated or rearranged LCR, was 1·4- to 3·0-fold higher, respectively. These results indicate that rearrangements within the LCR of HPV-16 isolated from African PCs are frequently found (2 out of 5, 40%). It is also shown that increased HPV LCR activity is associated with an increased E6/E7-mediated transforming activity, suggesting that natural variants can play a major role in the pathogenesis of genital carcinomas.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2969
2000-12-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812969a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2969&mimeType=html&fmt=ahah

References

  1. Apt, D., Liu, Y. & Bernard, H.-U. ( 1994; ). Cloning and functional analysis of spliced isoforms of human nuclear factor I–X: interference with transcriptional activation by NFI/CTF in a cell-type specific manner. Nucleic Acids Research 22, 3825-3833.[CrossRef]
    [Google Scholar]
  2. Barbosa, M. S. & Schlegel, R. ( 1989; ). The E6 and E7 genes of HPV-18 are sufficient for inducing two-stage in vitro transformation of human keratinocytes. Oncogene 4, 1529-1532.
    [Google Scholar]
  3. Barbosa, M. S., Vass, W. C., Lowy, D. R. & Schiller, J. T. ( 1991; ). In vitro biological activities of the E6 and E7 genes vary among human papillomavirus of different oncogenic potential. Journal of Virology 65, 292-298.
    [Google Scholar]
  4. Barrasso, R., de Brux, J., Croissant, O. & Orth, G. ( 1987; ). High prevalence of papillomavirus-associated penile intraepithelial neoplasia in sexual partners of women with cervical intraepithelial neoplasia. New England Journal of Medicine 317, 916-923.[CrossRef]
    [Google Scholar]
  5. Bedell, M. A., Jones, K. H., Grossman, S. R. & Lalmins, L. A. ( 1989; ). Identification of human papillomavirus type 18 transforming genes in immortalized and primary cell. Journal of Virology 63, 1247-1255.
    [Google Scholar]
  6. Buonaguro, F. M., Tornesello, M. L., Buonaguro, L., Del Gaudio, E., Beth-Giraldo, E. & Giraldo, G. ( 1994; ). Role of HIV as cofactor in HPV oncogenesis: in vitro evidences of virus interactions. In Advanced Technologies in Research, Diagnosis and Treatment of AIDS and in Oncology, pp. 102-109. Edited by G. Giraldo, M. Salvatore, L. Chieco-Bianchi & E. Beth-Giraldo. Basel:Karger.
  7. Buonaguro, F. M., Tornesello, M. L., Salatiello, I., Okong, P., Buonaguro, L., Beth-Giraldo, E., Biryahwaho, B., Sempala, S. K. D. & Giraldo, G. (2000). The Uganda study on HPV variants and genital cancers. Journal of Clinical Virology (in press).
  8. Chan, W. K., Chong, T., Bernard, H. U. & Klock, G. ( 1990; ). Transcription of the transforming genes of the oncogenic human papillomavirus type 16 is stimulated by tumor promoters through AP1 binding sites. Nucleic Acids Research 18, 763-769.[CrossRef]
    [Google Scholar]
  9. Chan, S.-Y., Ho, L., Ong, C.-K., Chow, V., Drescher, B., Dürst, M., ter Meulen, J., Villa, L., Luande, J., Mgaya, H. N. & Bernard, H.-U. ( 1992; ). Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its co-evolution with humankind. Journal of Virology 66, 2057-2066.
    [Google Scholar]
  10. Chen, Z., Storthz, K. A. & Shillitoe, E. J. ( 1997; ). Mutations in the long control region of human papillomavirus DNA in oral cancer cells, and their functional consequences. Cancer Research 57, 1614-1619.
    [Google Scholar]
  11. Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81, 1991-1995.[CrossRef]
    [Google Scholar]
  12. Cripe, T. P., Haugen, T. H., Turk, J. P., Tabatabai, F., Schmid, P. G., Dürst, M., Gissmann, L., Roman, A. & Turek, L. P. ( 1987; ). Transcriptional regulation of the human papillomavirus-16 E6/E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. EMBO Journal 6, 3745-3753.
    [Google Scholar]
  13. Cullen, A. P., Reid, R., Campion, M. & Lorincz, A. T. ( 1991; ). Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasms. Journal of Virology 65, 606-612.
    [Google Scholar]
  14. Davies, R., Hicks, R., Crook, J., Morris, J. & Vousden, K. ( 1993; ). Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. Journal of Virology 67, 2521-2528.
    [Google Scholar]
  15. Demers, G. W., Foster, S. A., Halbert, C. L. & Galloway, D. A. ( 1994; ). Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proceedings of the National Academy of Sciences, USA 91, 4382-4386.[CrossRef]
    [Google Scholar]
  16. Dodge, O. G., Owor, R. & Templeton, A. C. ( 1973; ). Tumours of the male genitalia. In Tumours in a Tropical Country. Recent Results in Cancer Control, pp. 132-144. Edited by A. C. Templeton. Berlin:Springer.
  17. Dong, X. P., Stubenrauch, F., Beyer-Finkler, E. & Pfister, H. ( 1994; ). Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. International Journal of Cancer 58, 803-808.[CrossRef]
    [Google Scholar]
  18. Dürst, M., Gissman, H., Ikenberg, H. & zur Hausen, H. ( 1983; ). A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proceedings of the National Academy of Sciences, USA 80, 3812-3815.[CrossRef]
    [Google Scholar]
  19. Dürst, M., Glitz, D., Schneider, A. & zur Hausen, H. ( 1992; ). Human papillomavirus type 16 (HPV-16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189, 132-140.[CrossRef]
    [Google Scholar]
  20. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. ( 1989; ). The human papillomavirus-16 E7 oncoprotein is able to bind the retinoblastoma gene product. Science 243, 934-937.[CrossRef]
    [Google Scholar]
  21. Eschle, D., Dürst, M., ter Meulen, J., Luande, J., Eberhardt, H. C., Pawlita, M. & Gissmann, L. ( 1992; ). Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. Journal of General Virology 73, 1829-1832.[CrossRef]
    [Google Scholar]
  22. Gentile, G., Giraldo, G., Stabile, M., Beth-Giraldo, E., Lonardo, F., Kyalwazi, S. K., Perone, L. & Ventruto, V. ( 1987; ). Cytogenetic study of a cell line of human penile cancer. Annales de Genetique 30, 164-169.
    [Google Scholar]
  23. Gloss, B., Chong, T. & Bernard, H.-U. ( 1989; ). Numerous nuclear proteins bind the long control region of human papillomavirus type 16: a subset of 6 of 23 DNase I-protected segments coincides with the location of the cell-type-specific enhancer. Journal of Virology 63, 1142-1152.
    [Google Scholar]
  24. Harper, J. R., Greenhalgh, D. A. & Yuspa, S. H. ( 1988; ). Expression of transfected DNA by primary murine keratinocytes. Journal of Investigative Dermatology 91, 150-153.[CrossRef]
    [Google Scholar]
  25. Havre, P. A., Yuan, J., Hedrick, L., Cho, K. R. & Glazer, P. M. ( 1995; ). p53 inactivation by HPV-16 E6 results in increased mutagenesis in human cells. Cancer Research 55, 4420-4424.
    [Google Scholar]
  26. Higgins, G. D., Phillips, G. E., Smith, L. A., Uzelin, D. M. & Burrel, C. J. ( 1992; ). High prevalence of human papillomavirus transcripts in all grades of cervical intraepithelial glandular neoplasia. Cancer 70, 136-146.[CrossRef]
    [Google Scholar]
  27. Ho, L., Chan, S.-Y., Burk, R. D., Das, B. C., Fujinaga, K., Icenogle, J. P., Kahn, T., Kiviat, N., Lancaster, W., Mavromara-Nazos, P., Labropoulou, V., Mitrani-Rosenbaum, S., Norrild, B., Pillai, M. R., Tay, S.-K., Villa, L., Wheeler, C. M., Williamson, A.-L. & Bernard, H.-U. ( 1993; ). The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and movement of ancient human populations. Journal of Virology 67, 6413-6423.
    [Google Scholar]
  28. Hsu, E. M., McNicol, P. J., Guijon, F. B. & Paraskevas, M. ( 1993; ). Quantification of HPV-16 E6/E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. International Journal of Cancer 55, 397-401.[CrossRef]
    [Google Scholar]
  29. Human Papillomaviruses Compendium (1996). Edited by G. Myers, S. Sverdrup, C. Baker, A. McBride, K. Munger, H. U. Bernard & J. Meissner. Los Alamos, NM, USA: Los Alamos National Laboratory.
  30. IARC (1995). IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans, vol. 64, Human Papillomaviruses. Lyon: International Agency for Research on Cancer, World Health Organization.
  31. Icenogle, J. P., Sathya, P., Miller, D. L., Tucker, R. & Rawls, W. E. ( 1991; ). Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology 184, 101-107.[CrossRef]
    [Google Scholar]
  32. Ishiji, T., Lace, M., Parkkinen, S., Anderson, R. D., Haugen, T. H., Cripe, T. P., Xiao, J.-H., Davidson, I., Cahmbon, P. & Turek, L. P. ( 1992; ). Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO Journal 11, 2271-2281.
    [Google Scholar]
  33. Jones, D. L. & Munger, K. ( 1997; ). Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. Journal of Virology 71, 2905-2912.
    [Google Scholar]
  34. Khare, S., Pater, M. M., Tang, S. C. & Pater, A. ( 1997; ). Effect of glucocorticoid hormones on viral gene expression, growth, and dysplastic differentiation in HPV16-immortalized ectocervical cells. Experimental Cell Research 232, 353-360.[CrossRef]
    [Google Scholar]
  35. Kyalwazi, S. K. ( 1966; ). Carcinoma of the penis: a review of 153 cases admitted to Mulago Hospital, Kampala, Uganda. East Africa Medical Journal 43, 415-425.
    [Google Scholar]
  36. Lorincz, A. T., Reid, R., Jenson, A. B., Greenberg, M. D., Lancaster, W. & Kurman, R. J. ( 1992; ). Human papillomavirus infection of the cervix: relative risk association of 15 common anogenital types. Obstetrics and Gynecology 79, 328-337.[CrossRef]
    [Google Scholar]
  37. McCance, D. J., Kalache, A., Ashdown, K. X., Andrade, L., Menzes, F., Smith, P. & Doll, R. ( 1986; ). Human papillomavirus type 16 and 18 in carcinomas of the penis from Brazil. International Journal of Cancer 37, 55-59.[CrossRef]
    [Google Scholar]
  38. Martin, L. G., Demers, G. W. & Galloway, D. A. ( 1998; ). Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. Journal of Virology 72, 975-985.
    [Google Scholar]
  39. May, M., Dong, X. P., Beyer-Finkler, F., Stubenrauch, F., Fuchs, P. G. & Pfister, H. ( 1994; ). The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO Journal 13, 1460-1466.
    [Google Scholar]
  40. Mittal, R., Pater, A. & Pater, M. M. ( 1993; ). Multiple human papillomavirus type 16 glucocorticoid response elements functional for transformation, transient expression, and DNA protein interactions. Journal of Virology 67, 5656-5659.
    [Google Scholar]
  41. Morozov, A., Shiyanov, P., Barr, E., Leiden, J. M. & Raychaudhuri, P. ( 1997; ). Accumulation of human papillomavirus type 16 E7 protein bypasses G1 arrest induced by serum deprivation and by the cell cycle inhibitor p21. Journal of Virology 71, 3451-3457.
    [Google Scholar]
  42. O’Connor, M. & Bernard, H.-U. ( 1995; ). Oct-1 activates the epithelial-specific enhancer of human papillomavirus type 16 via a synergistic interaction with NFI at a conserved composite regulatory element. Virology 207, 77-88.[CrossRef]
    [Google Scholar]
  43. O’Connor, M. J., Tan, S. H., Tan, C. H. & Bernard, H. U. ( 1996; ). YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. Journal of Virology 70, 6529-6539.
    [Google Scholar]
  44. O’Connor, M. J., Stunkel, W., Zimmermann, H., Koh, C. H. & Bernard, H. U. ( 1998; ). A novel YY1-independent silencer represses the activity of the human papillomavirus type 16 enhancer. Journal of Virology 72, 10083-10092.
    [Google Scholar]
  45. Peacock, J. W., Matlashewski, G. J. & Benchimoi, S. ( 1990; ). Synergism between pairs of immortalizing genes in transforming assays of rat embryo fibroblasts. Oncogene 5, 1769-1774.
    [Google Scholar]
  46. Phelps, W. C., Yes, C. L., Munger, K. & Howley, P. M. ( 1988; ). The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53, 539-547.[CrossRef]
    [Google Scholar]
  47. Reuter, S., Bartelmann, M., Vogt, M., Geisen, C., Napierski, I., Kahn, T., Delius, H., Lichter, P., Weitz, S., Korn, B. & Schwarz, E. ( 1998; ). APM-1, a novel human gene, identified by aberrant co-transcription with papillomavirus oncogenes in a cervical carcinoma cell line, encodes a BTB/POZ-zinc finger protein with growth inhibitory activity. EMBO Journal 17, 215-222.[CrossRef]
    [Google Scholar]
  48. Reznikoff, C. A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K. J., DeVries, S., Bindley, C. & Newton, M. A. ( 1994; ). Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6- immortalized human uroepithelial cells. Genes & Development 8, 2227-2240.[CrossRef]
    [Google Scholar]
  49. Riou, G., Favre, M., Jeannel, D., Bourthis, J., Le Doussal, V. & Orth, G. ( 1990; ). Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. Lancet 335, 1171-1174.[CrossRef]
    [Google Scholar]
  50. Rosen, M. & Auborn, K. ( 1991; ). Duplication of upstream regulatory sequences increases the transformation potential of human papillomavirus type 11. Virology 185, 484-487.[CrossRef]
    [Google Scholar]
  51. Romanczuk, H., Villa, L. L., Schlegel, R. & Howley, P. M. ( 1991; ). The viral transcriptional regulatory region upstream of the E6 and E7 genes is the major determinant of the differential immortalization activities of human papillomavirus type 16 and 18. Journal of Virology 65, 2739-2744.
    [Google Scholar]
  52. Sanger, F., Donelson, J. E., Coulson, A. R., Kössel, H. & Fischer, D. ( 1973; ). Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage f1 DNA. Proceedings of the National Academy of Sciences, USA 70, 1209-1219.[CrossRef]
    [Google Scholar]
  53. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. ( 1993; ). The HPV-16 E6 and E6AP complex functions as a ubiquitin protein ligase in the ubiquitination of p53. Cell 75, 495-505.[CrossRef]
    [Google Scholar]
  54. Schmauz, R. & Jain, D. K. ( 1971; ). Geographical variation of carcinoma of the penis in Uganda. British Journal of Cancer 25, 25-32.[CrossRef]
    [Google Scholar]
  55. Schneider, A. ( 1994; ). Natural history of genital papillomavirus infections. Intervirology 37, 201-214.
    [Google Scholar]
  56. Schwartzman Fang, B., Guedes, A. C., Munoz, L. C. & Villa, L. L. ( 1993; ). Human papillomavirus type 16 variants isolated from vulvar bowenoid papulosis. Journal of Medical Virology 41, 49-54.[CrossRef]
    [Google Scholar]
  57. Schwarz, E., Freese, K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A. & zur Hausen, H. ( 1985; ). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111-114.[CrossRef]
    [Google Scholar]
  58. Seed, B. & Sheen, J. Y. ( 1988; ). A simple phase extraction assay for chloramphenicol acyl transferase activity. Gene 67, 271-277.[CrossRef]
    [Google Scholar]
  59. Seedorf, K., Krämmer, G., Dürst, M., Suhai, S. & Röwekamp, W. G. ( 1985; ). Human papillomavirus type 16 DNA sequence. Virology 145, 181-185.[CrossRef]
    [Google Scholar]
  60. Sibbet, G. J., Cuthill, S. & Campo, M. S. ( 1995; ). The enhancer in the long control region of human papillomavirus type 16 is up-regulated by PEF-1 and down-regulated by Oct-1. Journal of Virology 69, 4006-4011.
    [Google Scholar]
  61. Slebos, R. J., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O., Jacks, T., Hedrick, L., Kastan, M. B. & Cho, K. R. ( 1994; ). p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proceedings of the National Academy of Sciences, USA 91, 5320-5324.[CrossRef]
    [Google Scholar]
  62. Smotkin, D. & Wettstein, F. O. ( 1986; ). Transcription of human papillomavirus type 16 early genes in cervical cancer and a cervical cancer derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, USA 83, 4680-4684.[CrossRef]
    [Google Scholar]
  63. Solinas-Toldo, S., Dürst, M. & Lichter, P. ( 1997; ). Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality. Proceedings of the National Academy of Sciences, USA 94, 3854-3859.[CrossRef]
    [Google Scholar]
  64. Stunkel, W. & Bernard, H. U. ( 1999; ). The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. Journal of Virology 73, 1918-1930.
    [Google Scholar]
  65. Tan, S. H., Leong, L. E., Walker, P. A. & Bernard, H. U. ( 1994; ). The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. Journal of Virology 68, 6411-6420.
    [Google Scholar]
  66. Tan, S. H., Bartsch, D., Schwarz, E. & Bernard, H. U. ( 1998; ). Nuclear matrix attachment regions of human papillomavirus type 16 point toward conservation of these genomic elements in all genital papillomaviruses. Journal of Virology 72, 3610-3622.
    [Google Scholar]
  67. Ting, Y. & Manos, M. M. ( 1990; ). Detection and typing of genital human papillomaviruses. In PCR Protocols, pp. 356-367. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego, CA:Academic Press.
  68. Tornesello, M. L., Buonaguro, F. M., Beth-Giraldo, E., Kyalwazi, S. K. & Giraldo, G. ( 1992; ). Human papillomavirus (HPV) DNA in penile carcinomas and in two cell lines from high-incidence areas for genital cancers in Africa. International Journal Cancer 51, 587-592.[CrossRef]
    [Google Scholar]
  69. Tornesello, M. L., Buonaguro, F. M., Meglio, A., Buonaguro, L., Beth-Giraldo, E. & Giraldo, G. ( 1997; ). Sequence variations and viral genomic state of human papillomavirus type 16 in penile carcinomas from Ugandan patients. Journal of General Virology 78, 2199-2208.
    [Google Scholar]
  70. Van den Brule, A. J., Walboomers, J. M., Du Maine, M., Kenemans, P. & Meijer, C. J. L. M. ( 1991; ). Difference in prevalence of human papillomavirus genotypes in cytomorphologically normal cervical smears is associated with a history of cervical intraepithelial neoplasia. International Journal of Cancer 48, 404-408.[CrossRef]
    [Google Scholar]
  71. von Knebel Doeberitz, M., Rittmuller, C. & zur Hausen, H. ( 1992; ). Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. International Journal of Cancer 51, 831-834.[CrossRef]
    [Google Scholar]
  72. Wagatsuma, M., Hashimoto, K. & Matsukura, T. ( 1990; ). Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences. Journal of Virology 64, 813-821.
    [Google Scholar]
  73. Werness, B. A. X., Levine, A. J. & Howley, P. M. ( 1990; ). Association of human papillomavirus type 16 and 18 E6 proteins with p53. Science 248, 76-79.[CrossRef]
    [Google Scholar]
  74. White, A. E., Livanos, E. M. & Tisty, T. D. ( 1994; ). Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes & Development 8, 666-677.[CrossRef]
    [Google Scholar]
  75. Wiener, J. S., Effert, P. J., Humphrey, P. A., Yu, L., Liu, E. T. & Walther, P. J. ( 1992; ). Prevalence of human papillomavirus types 16 and 18 in squamous-cell carcinoma of the penis: a retrospective analysis of primary and metastatic lesions by differential polymerase chain reaction. International Journal of Cancer 50, 694-701.[CrossRef]
    [Google Scholar]
  76. Winship, P. R. ( 1989; ). An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research 17, 1266.[CrossRef]
    [Google Scholar]
  77. Xi, L. F., Koutsky, L. A., Galloway, D. A., Kuypers, J., Hughes, J. P., Wheeler, C. M., Holmes, K. K. & Kivlat, N. B. ( 1997; ). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. Journal of the National Cancer Institute 89, 796-802.[CrossRef]
    [Google Scholar]
  78. Yamada, T., Manos, M. M., Peto, J., Greer, C. E., Munoz, N., Bosch, F. X. & Wheeler, C. M. ( 1997; ). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. Journal of Virology 71, 2463-2472.
    [Google Scholar]
  79. Yasumoto, S., Burkhardt, A. L., Doniger, J. & DiPaolo, J. A. ( 1986; ). Human papillomavirus type 16 DNA-induced malignant transformation of NIH3T3 cells. Journal of Virology 57, 572-577.
    [Google Scholar]
  80. zur Hausen, H. ( 1989; ). Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Research 49, 4677-4881.
    [Google Scholar]
  81. zur Hausen, H. ( 1991; ). Human papillomaviruses in the pathogenesis of anogenital Cancer. Virology 184, 9-13.[CrossRef]
    [Google Scholar]
  82. zur Hausen, H. ( 1996; ). Papillomavirus infections – a major cause of human cancers. Biochimica et Biophysica Acta 1288, F55-F78.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2969
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2969
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error