1887

Abstract

The distribution of receptors for maedi–visna virus (MVV) was studied using co-cultivation assays for virus fusion and PCR-based assays to detect the formation of virus-specific reverse transcription products after virus entry. Receptors were present on cell lines from human, monkey, mouse, chicken, quail, hamster and ovine sources. Thus, the distribution of the receptor for MVV is more similar to that of the amphotropic type C retroviruses than to that of other lentiviruses. The receptor was sensitive to proteolysis by papain, but was resistant to trypsin. Chinese hamster ovary (CHO) and lung cells (V79 TOR) did not express functional receptors for MVV. The receptor was mapped to either chromosome 2 or 4 of the mouse using somatic cell hybrids. This allowed several candidates (e.g. MHC-II, CXCR4) that have been proposed for the MVV receptor to be excluded.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2919
2000-12-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812919a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2919&mimeType=html&fmt=ahah

References

  1. August M. J., Harter D. H. 1974; Visna virus-induced fusion of continous simian kidney cells. Archiv für die Gesamte Virusforschung 44:92–101
    [Google Scholar]
  2. Berger E. A., Murphy P. M., Farber J. M. 1999; Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17:657–700
    [Google Scholar]
  3. Brown K. E., Anderson S. M., Young N. S. 1993; Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262:114–117
    [Google Scholar]
  4. Bruett L., Barber S. A., Clements J. E. 2000; Characterization of a membrane-associated protein implicated in visna virus binding and infection. Virology 271:132–141
    [Google Scholar]
  5. Cahan L. D., Singh R., Paulson J. C. 1983; Sialyloligosaccharide receptors of binding variants of polyoma virus. Virology 130:281–289
    [Google Scholar]
  6. Clements J. E., Gabuzda D. H., Gdovin S. L. 1990; Cell type specific and viral regulation of visna virus gene expression. Virus Research 16:175–183
    [Google Scholar]
  7. Crane S. E., Buzy J., Clements J. E. 1991; Identification of cell-membrane proteins that bind visna virus. Journal of Virology 65:6137–6143
    [Google Scholar]
  8. Da Silva Teixeira M. F., Lambert V., Mselli-Lakahl L., Chettab A., Chebloune Y., Mornex J. F. 1997; Immortalization of caprine fibroblasts permissive for replication of small ruminant lentiviruses. American Journal of Veterinary Research 58:579–584
    [Google Scholar]
  9. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767
    [Google Scholar]
  10. Dalziel R. G., Hopkins J., Watt N. J., Dutia B. M., Clarke H. A. K., McConnell I. 1991; Identification of a putative cellular receptor for the lentivirus visna virus. Journal of General Virology 72:1905–1911
    [Google Scholar]
  11. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  12. Deng H. K., Unutmaz D., KewalRamani V. N., Littman D. R. 1997; Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300
    [Google Scholar]
  13. Dittmar M. T., McKnight A., Simmons G., Clapham P., Weiss R. A. 1997; HIV-1 tropism and co-receptor use. Nature 385:495–496
    [Google Scholar]
  14. DuBridge R. B., Tang P., Hsia H. C., Leong P. M., Miller J. H., Calos M. P. 1987; Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Molecular and Cellular Biology 7:379–387
    [Google Scholar]
  15. Eriksson K., McInnes E., Ryan S., Tonks P., McConnell I., Blacklaws B. 1999; CD4+ T-cells are required for the establishment of maedi-visna virus infection in macrophages but not dendritic cells in vivo. Virology 258:355–364
    [Google Scholar]
  16. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  17. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E. 1989; Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. Molecular and Cellular Biology 9:2728–2733
    [Google Scholar]
  18. Gendelman H. E., Narayan O., Kennedy-Stoskopf S., Kennedy P. G., Ghotbi Z., Clements J. E., Stanley J., Pezeshkpour G. 1986; Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages. Journal of Virology 58:67–74
    [Google Scholar]
  19. Gilden D. H., Devlin M., Wroblewska Z. 1981; The use of vesicular stomatitis-virus (visna virus) pseudotypes to demonstrate visna virus receptors in cells from different species. Archives of Virology 67:181–185
    [Google Scholar]
  20. Harter D. H., Hsu K. C., Rose H. M. 1968; Multiplication of visna virus in bovine and porcine cell lines. Proceedings of the Society for Experimental Biology and Medicine 129:295–300
    [Google Scholar]
  21. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. Journal of Virology 70:5282–5287
    [Google Scholar]
  22. Kaelbling M., Eddy R., Shows T. B., Copeland N. G., Gilbert D. J., Jenkins N. A., Klinger H. P., O’Hara B. 1991; Localization of the human gene allowing infection by gibbon ape leukaemia virus to human chromosome region 2q11-q14 and to the homologous region on mouse chromosome 2. Journal of Virology 65:1743–1747
    [Google Scholar]
  23. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. 1984; T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768
    [Google Scholar]
  24. Lee W. C., McConnell I., Blacklaws B. A. 1994; Cytotoxic activity against maedi-visna virus-infected macrophages. Journal of Virology 68:8331–8338
    [Google Scholar]
  25. Lerondelle C., Godet M., Mornex J. F. 1999; Infection of primary cultures of mammary epithelial cells by small ruminant lentiviruses. Veterinary Research 30:467–474
    [Google Scholar]
  26. MacIntyre E. H., Wintersgill C. J., Thormar H. 1972; Morphological transformation of human astrocytes by visna virus with complete virus production. Nature New Biology 237:111–113
    [Google Scholar]
  27. Markwell M. A., Paulson J. C. 1980; Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proceedings of the National Academy of Sciences, USA 77:5693–5697
    [Google Scholar]
  28. Miller D. G., Miller A. D. 1992; Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. Journal of Virology 66:78–84
    [Google Scholar]
  29. Miller D. G., Edwards R. H., Miller A. D. 1994; Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proceedings of the National Academy of Sciences, USA 91:78–82
    [Google Scholar]
  30. Morais R., Desjardins P., Zinkewich-Peotti K., Richer C. L. 1988; Chicken embryo cell line exhibits Japanese quail markers. In Vitro Cellular & Developmental Biology 24:1061–1063
    [Google Scholar]
  31. Nussbaum O., Broder C. C., Berger E. A. 1994; Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. Journal of Virology 68:5411–5422
    [Google Scholar]
  32. Rabbitts P., Impey H., Heppell-Parton A., Langford C., Tease C., Lowe N., Bailey D., Ferguson-Smith M., Carter N. 1995; Chromosome specific paints from a high resolution flow karyotype of the mouse. Nature Genetics 9:369–375
    [Google Scholar]
  33. Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. 1991; Nucleotide sequence of EV1, a British isolate of maedi-visna virus. Journal of General Virology 72:1893–1903
    [Google Scholar]
  34. Sattentau Q. J., Clapham P. R., Weiss R. A., Beverley P. C., Montagnier L., Alhalabi M. F., Gluckmann J. C., Klatzmann D. 1988; The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 2:101–105
    [Google Scholar]
  35. Schlegel R., Tralka T. S., Willingham M. C., Pastan I. 1983; Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding. site?Cell 32639–646
  36. Small J. A., Bieberich C., Ghotbi Z., Hess J., Scangos G. A., Clements J. E. 1989; The visna virus long terminal repeat directs expression of a reporter gene in activated macrophages, lymphocytes, and the central nervous systems of transgenic mice. Journal of Virology 63:1891–1896
    [Google Scholar]
  37. Tsvetkova I. V., Lipkind M. A., Zakstsl’skaia L., Iusipova N. A., Rozenfel’d E. L. 1967; Neuraminic acid as a cell receptor for virus of influenza. Biokhimiia 32:994–999 (in Russian
    [Google Scholar]
  38. Weiss R. A., Tailor C. S. 1995; Retrovirus receptors. Cell 82:531–533
    [Google Scholar]
  39. Willett B. J., Picard L., Hosie M. J., Turner J. D., Adema K., Clapham P. R. 1997; Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. Journal of Virology 71:6407–6415
    [Google Scholar]
  40. Williamson P., Holt S., Townsend S., Boyd Y. 1995; A somatic cell hybrid panel for mouse gene mapping characterized by PCR and FISH. Mammalian Genome 6:429–432
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-81-12-2919
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error