T-cell line adaptation of human immunodeficiency virus type 1 strain SF162: effects on envelope, and macrophage-tropism Free

Abstract

Changes in co-receptor-use by human immunodeficiency virus type 1 (HIV-1) strains are relatively rare . Here we describe two variants derived from the CCR5-using strain SF162, selected for replication in the C8166 T-cell line. Amino acid substitutions in the V3 loop conferred CXCR4-use; however, the loss of macrophage-tropism by one variant was due to a single mutation in the start codon of . We discuss how V3 loop and mutations acquired by replication in T-cell lines correlate with similar changes reported for primary isolates and HIV-1 sequences .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2899
2000-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812899a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2899&mimeType=html&fmt=ahah

References

  1. Agace W. W., Amara A., Roberts A. I., Pablos J. L., Thelen M., Uguccioni M., Li X. Y., Marsal J., Arenzana-Seisdedos F., Delauney T., Ebert E. C., Moser B., Parker C. M. 2000; Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Current Biology 10:325–328
    [Google Scholar]
  2. Asjo B., Morfeldt Manson L., Albert J., Biberfeld G., Karlsson A., Lidman K., Fenyo E. M. 1986; Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet ii:660–662
    [Google Scholar]
  3. Balliet J. W., Kolson D. L., Eiger G., Kim F. M., McGann K. A., Srinivasan A., Collman R. 1994; Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology 200:623–631
    [Google Scholar]
  4. Connor R. I., Ho D. D. 1994; Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. Journal of Virology 68:4400–4408
    [Google Scholar]
  5. Connor R. I., Sheridan K. E., Ceradini D., Choe S., Landau N. R. 1997; Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. Journal of Experimental Medicine 185:621–628
    [Google Scholar]
  6. De Jong J. J., De Ronde A., Keulen W., Tersmette M., Goudsmit J. 1992; Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. Journal of Virology 66:6777–6780
    [Google Scholar]
  7. Dejucq N., Simmons G., Clapham P. R. 1999; Expanded tropism of primary human immunodeficiency virus type 1 R5 strains to CD4+ T-cell lines determined by the capacity to exploit low concentrations of CCR5. Journal of Virology 73:7842–7847
    [Google Scholar]
  8. Di Marzio P., Tse J., Landau N. R. 1998; Chemokine receptor regulation and HIV type 1 tropism in monocyte macrophages. AIDS Research and Human Retroviruses 14:129–138
    [Google Scholar]
  9. Fauci A. S. 1996; Host factors and the pathogenesis of HIV-induced disease. Nature 384:529–534
    [Google Scholar]
  10. Fouchier R. A., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  11. Harrowe G., Cheng-Mayer C. 1995; Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210:490–494
    [Google Scholar]
  12. Holm-Hansen C., Grothues D., Rustad S., Rosok B., Pascu F. R., Asjo B. 1995; Characterization of HIV type 1 from Romanian children: lack of correlation between V3 loop amino acid sequence and syncytium formation in MT-2 cells. AIDS Research and Human Retroviruses 11:597–603
    [Google Scholar]
  13. Kawamura M., Ishizaki T., Ishimoto A., Shioda T., Kitamura T., Adachi A. 1994; Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures. Journal of General Virology 75:2427–2431
    [Google Scholar]
  14. Klasse P. J., Boyd M. T., Weiss R. A., Schulz T. F. 1996; Mutations in the vpu, env, and nef genes of a syncytium-inducing variant of HIV type 1 JR-CSF that infects a range of T cell lines. AIDS Research and Human Retroviruses 12:347–350
    [Google Scholar]
  15. Lama J., Mangasarian A., Trono D. 1999; Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Current Biology 9:622–631
    [Google Scholar]
  16. Lathey J. L., Pratt R. D., Spector S. A. 1997; Appearance of autologous neutralizing antibody correlates with reduction in virus load and phenotype switch during primary infection with human immunodeficiency virus type 1. Journal of Infectious Diseases 175:231–232
    [Google Scholar]
  17. Michael N. L., Moore J. P. 1999; HIV-1 entry inhibitors: evading the issue. Nature Medicine 5:740–742
    [Google Scholar]
  18. Pablos J. L., Amara A., Bouloc A., Santiago B., Caruz A., Galindo M., Delaunay T., Virelizier J. L., Arenzana-Seisdedos F. 1999; Stromal cell derived factor is expressed by dendritic cells and endothelium in human skin. American Journal of Pathology 155:1577–1586
    [Google Scholar]
  19. Scarlatti G., Tresoldi E., Bjorndal A., Fredriksson R., Colognesi C., Deng H. K., Malnati M. S., Plebani A., Siccardi A. G., Littman D. R., Fenyo E. M., Lusso P. 1997; In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Medicine 3:1259–1265
    [Google Scholar]
  20. Schubert U., Clouse K. A., Strebel K. 1995; Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. Journal of Virology 69:7699–7711
    [Google Scholar]
  21. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. 1996; Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Letters 398:12–18
    [Google Scholar]
  22. Schubert U., Anton L. C., Bacik I., Cox J. H., Bour S., Bennink J. R., Orlowski M., Strebel K., Yewdell J. W. 1998; CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. Journal of Virology 72:2280–2288
    [Google Scholar]
  23. Schubert U., Bour S., Willey R. L., Strebel K. 1999; Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. Journal of Virology 73:887–896
    [Google Scholar]
  24. Shioda T., Levy J. A., Cheng-Mayer C. 1991; Macrophage and T cell line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349:167–169
    [Google Scholar]
  25. Simmons G., McKnight A., Takeuchi Y., Hoshino H., Clapham P. R. 1995; Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209:696–700
    [Google Scholar]
  26. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., Carnegie G., Desselberger U., Gray P. W., Weiss R. A., Clapham P. R. 1996; Primary syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70:8355–8360
    [Google Scholar]
  27. Simmons G., Reeves J. D., McKnight A., Dejucq N., Hibbitts S., Power C. A., Aarons E., Schols D., Clercq E. D., Proudfoot A. E. I., Clapham P. R. 1998; CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. Journal of Virology 72:8453–8457
    [Google Scholar]
  28. Stent G., Joo G. B., Kierulf P., Asjo B. 1997; Macrophage tropism: fact or fiction?. Journal of Leukocyte Biology 62:4–11
    [Google Scholar]
  29. Tersmette M., de Goede R. E., Al B. J., Winkel I. N., Gruters R. A., Cuypers H. T., Huisman H. G., Miedema F. 1988; Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Journal of Virology 62:2026–2032
    [Google Scholar]
  30. Verani A., Pesenti E., Polo S., Tresoldi E., Scarlatti G., Lusso P., Siccardi A. G., Vercelli D. 1998; CXCR4 is a functional coreceptor for infection of human macrophages by CXCR4-dependent primary HIV-1 isolates. Journal of Immunology 161:2084–2088
    [Google Scholar]
  31. Yi Y., Rana S., Turner J. D., Gaddis N., Collman R. G. 1998; CXCR4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. Journal of Virology 72:772–777
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2899
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2899
Loading

Data & Media loading...

Most cited Most Cited RSS feed