1887

Abstract

Coronavirus defective RNAs (D-RNAs) have been used as RNA vectors for the expression of heterologous genes and as vehicles for reverse genetics by modifying coronavirus genomes by targetted recombination. D-RNAs based on the avian coronavirus infectious bronchitis virus (IBV) D-RNA CD-61 have been rescued (replicated and packaged into virions) in a helper virus-dependent manner following electroporation of -generated T7 transcripts into IBV-infected cells. In order to increase the efficiency of rescue of IBV D-RNAs, cDNAs based on CD-61, under the control of a T7 promoter, were integrated into the fowlpox virus (FPV) genome. The 3′-UTR of the D-RNAs was flanked by a hepatitis delta antigenomic ribozyme and T7 terminator sequence to generate suitable 3′ ends for rescue by helper IBV. Cells were co-infected simultaneously with IBV, the recombinant FPV (rFPV) containing the D-RNA sequence and a second rFPV expressing T7 RNA polymerase for the initial expression of the D-RNA transcript, subsequently rescued by helper IBV. Rescue of rFPV-derived CD-61 occurred earlier and with higher efficiency than demonstrated previously for electroporation of T7-generated RNA transcripts in avian cells. Rescue of CD-61 was also demonstrated for the first time in mammalian cells. The rescue of rFPV-derived CD-61 by M41 helper IBV resulted in leader switching, in which the Beaudette-type leader sequence on CD-61 was replaced with the M41 leader sequence, confirming that helper IBV virus replicated the rFPV-derived D-RNA. An rFPV-derived D-RNA containing the luciferase gene under the control of an IBV transcription-associated sequence was also rescued and expressed luciferase on serial passage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2855
2000-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812855a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2855&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) (1987). Current Protocols in Molecular Biology. New York: John Wiley.
  2. Barclay, W., Li, Q., Hutchinson, G., Moon, D., Richardson, A., Percy, N., Almond, J. W. & Evans, D. J. ( 1998; ). Encapsidation studies of poliovirus subgenomic replicons. Journal of General Virology 79, 1725-1734.
    [Google Scholar]
  3. Black, D. N., Hammond, J. M. & Kitching, R. P. ( 1986; ). Genomic relationship between capripoxviruses. Virus Research 5, 277-292.[CrossRef]
    [Google Scholar]
  4. Bonfield, J. K., Smith, K. F. & Staden, R. ( 1995; ). A new DNA sequence assembly program. Nucleic Acids Research 23, 4992-4999.[CrossRef]
    [Google Scholar]
  5. Boulanger, D., Green, P., Smith, T., Czerny, C.-P. & Skinner, M. A. ( 1998; ). The 131-amino-acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. Journal of Virology 72, 170-179.
    [Google Scholar]
  6. Boursnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M. & Binns, M. M. ( 1987; ). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68, 57-77.[CrossRef]
    [Google Scholar]
  7. Boursnell, M. E. G., Green, P. F., Campbell, J. I. A., Deuter, A., Peters, R. W., Tomley, F. M., Samson, A. C. R., Chambers, P., Emmerson, P. T. & Binns, M. M. ( 1990; ). Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. Journal of General Virology 71, 621-628.[CrossRef]
    [Google Scholar]
  8. Britton, P., Green, P., Kottier, S., Mawditt, K. L., Pénzes, Z., Cavanagh, D. & Skinner, M. A. ( 1996; ). Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. Journal of General Virology 77, 963-967.[CrossRef]
    [Google Scholar]
  9. Carroll, M. W. & Moss, B. ( 1997; ). Poxviruses as expression vectors. Current Opinion in Biotechnology 8, 573-577.[CrossRef]
    [Google Scholar]
  10. Cavanagh, D. & Naqi, S. ( 1997; ). Infectious bronchitis. In Diseases of Poultry, pp. 511-526. Edited by B. W. Calnek, H. J. Barnes, C. W. Beard, W. M. Reid & H. W. Yoda. Ames, IA:Iowa State University Press.
  11. de Vries, A. A. F., Horzinek, M. C., Rottier, P. J. M. & de Groot, R. J. ( 1997; ). The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Seminars in Virology 8, 33-47.[CrossRef]
    [Google Scholar]
  12. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 6-13.[CrossRef]
    [Google Scholar]
  13. Fischer, F., Stegen, C. F., Koetzner, C. A. & Masters, P. S. ( 1997; ). Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. Journal of Virology 71, 5148-5160.
    [Google Scholar]
  14. Fischer, F., Stegen, C. F., Masters, P. S. & Samsonoff, W. A. ( 1998; ). Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. Journal of Virology 72, 7885-7894.
    [Google Scholar]
  15. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83, 8122-8126.[CrossRef]
    [Google Scholar]
  16. Fuerst, T. R., Earl, P. L. & Moss, B. ( 1987; ). Use of a hybrid vaccinia virus–T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7, 2538-2544.
    [Google Scholar]
  17. Hiscox, J. A., Mawditt, K. L., Cavanagh, D. & Britton, P. ( 1995; ). Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. Journal of Virology 69, 6219-6227.
    [Google Scholar]
  18. Hsue, B. & Masters, P. S. ( 1997; ). A bulged stem–loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. Journal of Virology 71, 7567-7578.
    [Google Scholar]
  19. Hsue, B. & Masters, P. S. ( 1999; ). Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. Journal of Virology 73, 6128-6135.
    [Google Scholar]
  20. Izeta, A., Smerdou, C., Alonso, S., Pénzes, Z., Mendez, A., Plana-Durán, J. & Enjuanes, L. ( 1999; ). Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. Journal of Virology 73, 1535-1545.
    [Google Scholar]
  21. Koetzner, C. A., Parker, M. M., Ricard, C. S., Sturman, L. S. & Masters, P. S. ( 1992; ). Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. Journal of Virology 66, 1841-1848.
    [Google Scholar]
  22. Kuo, L., Godeke, G. J., Raamsman, M. J., Masters, P. S. & Rottier, P. J. ( 2000; ). Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology 74, 1393-1406.[CrossRef]
    [Google Scholar]
  23. Lai, M. M. & Cavanagh, D. ( 1997; ). The molecular biology of coronaviruses. Advances in Virus Research 48, 1-100.[CrossRef]
    [Google Scholar]
  24. Liao, C. L. & Lai, M. M. C. ( 1992; ). RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. Journal of Virology 66, 6117-6124.
    [Google Scholar]
  25. Liao, C.-L. & Lai, M. M. C. ( 1994; ). Requirement of the 5′-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. Journal of Virology 68, 4727-4737.
    [Google Scholar]
  26. Lin, Y. J., Liao, C. L. & Lai, M. M. ( 1994; ). Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. Journal of Virology 68, 8131-8140.
    [Google Scholar]
  27. Makino, S. & Lai, M. M. C. ( 1989; ). High-frequency leader sequence switching during coronavirus defective interfering RNA replication. Journal of Virology 63, 5285-5292.
    [Google Scholar]
  28. Martin, C. T. & Coleman, J. E. ( 1987; ). Kinetic analysis of T7 RNA polymerase–promoter interactions with small synthetic promoters. Biochemistry 26, 2690-2696.[CrossRef]
    [Google Scholar]
  29. Masters, P. S. ( 1999; ). Reverse genetics of the largest RNA viruses. Advances in Virus Research 53, 245-264.
    [Google Scholar]
  30. Masters, P. S., Koetzner, C. A., Kerr, C. A. & Heo, Y. ( 1994; ). Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. Journal of Virology 68, 328-337.
    [Google Scholar]
  31. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. ( 1987; ). Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Research 15, 8783-8798.[CrossRef]
    [Google Scholar]
  32. Mockett, B., Binns, M. M., Boursnell, M. E. G. & Skinner, M. A. ( 1992; ). Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization. Journal of General Virology 73, 2661-2668.[CrossRef]
    [Google Scholar]
  33. Molenkamp, R., Rozier, B. C., Greve, S., Spaan, W. J. & Snijder, E. J. ( 2000; ). Isolation and characterization of an arterivirus defective interfering RNA genome. Journal of Virology 74, 3156-3165.[CrossRef]
    [Google Scholar]
  34. Moss, B. ( 1992; ). Poxviruses as eukaryotic expression vectors. Seminars in Virology 3, 277-283.
    [Google Scholar]
  35. Moss, B. ( 1996; ). Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences, USA 93, 11341-11348.[CrossRef]
    [Google Scholar]
  36. Pattnaik, A. K., Ball, L. A., LeGrone, A. W. & Wertz, G. W. ( 1992; ). Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69, 1011-1020.[CrossRef]
    [Google Scholar]
  37. Peng, D., Koetzner, C. A. & Masters, P. S. ( 1995a; ). Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination. Journal of Virology 69, 3449-3457.
    [Google Scholar]
  38. Peng, D., Koetzner, C. A., McMahon, T., Zhu, Y. & Masters, P. S. ( 1995b; ). Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. Journal of Virology 69, 5475-5484.
    [Google Scholar]
  39. Pénzes, Z., Tibbles, K., Shaw, K., Britton, P., Brown, T. D. K. & Cavanagh, D. ( 1994; ). Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology 203, 286-293.[CrossRef]
    [Google Scholar]
  40. Pénzes, Z., Wroe, C., Brown, T. D., Britton, P. & Cavanagh, D. ( 1996; ). Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. Journal of Virology 70, 8660-8668.
    [Google Scholar]
  41. Phillips, J. J., Chua, M. M., Lavi, E. & Weiss, S. R. ( 1999; ). Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. Journal of Virology 73, 7752-7760.
    [Google Scholar]
  42. Qingzhong, Y., Barrett, T., Brown, T. D. K., Cook, J. K. A., Green, P., Skinner, M. A. & Cavanagh, D. ( 1994; ). Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 12, 569-573.[CrossRef]
    [Google Scholar]
  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Sanchez, C. M., Izeta, A., Sanchez-Morgado, J. M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J. & Enjuanes, L. ( 1999; ). Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. Journal of Virology 73, 7607-7618.
    [Google Scholar]
  45. Siddell, S. G. ( 1995; ). The Coronaviridae. In The Coronaviridae, pp. 1-10. Edited by S. G. Siddell. New York:Plenum.
  46. Somogyi, P., Frazier, J. & Skinner, M. A. ( 1993; ). Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197, 439-444.[CrossRef]
    [Google Scholar]
  47. Stern, D. F. & Kennedy, S. I. T. ( 1980; ). Coronavirus multiplication strategy. I. Identification and characterization of virus-specific RNA. Journal of Virology 34, 665-674.
    [Google Scholar]
  48. Stirrups, K., Shaw, K., Evans, S., Dalton, K., Cavanagh, D. & Britton, P. ( 2000a; ). Leader switching occurs during the rescue of defective RNAs by heterologous strains of the coronavirus infectious bronchitis virus. Journal of General Virology 81, 791-801.
    [Google Scholar]
  49. Stirrups, K., Shaw, K., Evans, S., Dalton, K., Casais, R., Cavanagh, D. & Britton, P. ( 2000b; ). Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. Journal of General Virology 81, 1687-1698.
    [Google Scholar]
  50. van der Most, R. G., Bredenbeek, P. J. & Spaan, W. J. M. ( 1991; ). A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. Journal of Virology 65, 3219-3226.
    [Google Scholar]
  51. van der Most, R. G., Heijnen, L., Spaan, W. J. M. & de Groot, R. J. ( 1992; ). Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Research 20, 3375-3381.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2855
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2855
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error