1887

Abstract

Coronavirus defective RNAs (D-RNAs) have been used as RNA vectors for the expression of heterologous genes and as vehicles for reverse genetics by modifying coronavirus genomes by targetted recombination. D-RNAs based on the avian coronavirus infectious bronchitis virus (IBV) D-RNA CD-61 have been rescued (replicated and packaged into virions) in a helper virus-dependent manner following electroporation of -generated T7 transcripts into IBV-infected cells. In order to increase the efficiency of rescue of IBV D-RNAs, cDNAs based on CD-61, under the control of a T7 promoter, were integrated into the fowlpox virus (FPV) genome. The 3′-UTR of the D-RNAs was flanked by a hepatitis delta antigenomic ribozyme and T7 terminator sequence to generate suitable 3′ ends for rescue by helper IBV. Cells were co-infected simultaneously with IBV, the recombinant FPV (rFPV) containing the D-RNA sequence and a second rFPV expressing T7 RNA polymerase for the initial expression of the D-RNA transcript, subsequently rescued by helper IBV. Rescue of rFPV-derived CD-61 occurred earlier and with higher efficiency than demonstrated previously for electroporation of T7-generated RNA transcripts in avian cells. Rescue of CD-61 was also demonstrated for the first time in mammalian cells. The rescue of rFPV-derived CD-61 by M41 helper IBV resulted in leader switching, in which the Beaudette-type leader sequence on CD-61 was replaced with the M41 leader sequence, confirming that helper IBV virus replicated the rFPV-derived D-RNA. An rFPV-derived D-RNA containing the luciferase gene under the control of an IBV transcription-associated sequence was also rescued and expressed luciferase on serial passage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2855
2000-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812855a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2855&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1987; Current Protocols in Molecular Biology. New York: John Wiley;
    [Google Scholar]
  2. Barclay W., Li Q., Hutchinson G., Moon D., Richardson A., Percy N., Almond J. W., Evans D. J. 1998; Encapsidation studies of poliovirus subgenomic replicons. Journal of General Virology 79:1725–1734
    [Google Scholar]
  3. Black D. N., Hammond J. M., Kitching R. P. 1986; Genomic relationship between capripoxviruses. Virus Research 5:277–292
    [Google Scholar]
  4. Bonfield J. K., Smith K. F., Staden R. 1995; A new DNA sequence assembly program. Nucleic Acids Research 23:4992–4999
    [Google Scholar]
  5. Boulanger D., Green P., Smith T., Czerny C.-P., Skinner M. A. 1998; The 131-amino-acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. Journal of Virology 72:170–179
    [Google Scholar]
  6. Boursnell M. E. G., Brown T. D. K., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68:57–77
    [Google Scholar]
  7. Boursnell M. E. G., Green P. F., Campbell J. I. A., Deuter A., Peters R. W., Tomley F. M., Samson A. C. R., Chambers P., Emmerson P. T., Binns M. M. 1990; Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. Journal of General Virology 71:621–628
    [Google Scholar]
  8. Britton P., Green P., Kottier S., Mawditt K. L., Pénzes Z., Cavanagh D., Skinner M. A. 1996; Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. Journal of General Virology 77:963–967
    [Google Scholar]
  9. Carroll M. W., Moss B. 1997; Poxviruses as expression vectors. Current Opinion in Biotechnology 8:573–577
    [Google Scholar]
  10. Cavanagh D., Naqi S. 1997; Infectious bronchitis. In Diseases of Poultry pp 511–526 Edited by Calnek B. W., Barnes H. J., Beard C. W., Reid W. M., Yoda H. W. Ames, IA: Iowa State University Press;
    [Google Scholar]
  11. de Vries A. A. F., Horzinek M. C., Rottier P. J. M., de Groot R. J. 1997; The genome organization of the Nidovirales : similarities and differences between arteri-, toro-, and coronaviruses. Seminars in Virology 8:33–47
    [Google Scholar]
  12. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  13. Fischer F., Stegen C. F., Koetzner C. A., Masters P. S. 1997; Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. Journal of Virology 71:5148–5160
    [Google Scholar]
  14. Fischer F., Stegen C. F., Masters P. S., Samsonoff W. A. 1998; Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. Journal of Virology 72:7885–7894
    [Google Scholar]
  15. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  16. Fuerst T. R., Earl P. L., Moss B. 1987; Use of a hybrid vaccinia virus–T7 RNA polymerase system for expression of target genes. Molecular and Cellular Biology 7:2538–2544
    [Google Scholar]
  17. Hiscox J. A., Mawditt K. L., Cavanagh D., Britton P. 1995; Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. Journal of Virology 69:6219–6227
    [Google Scholar]
  18. Hsue B., Masters P. S. 1997; A bulged stem–loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. Journal of Virology 71:7567–7578
    [Google Scholar]
  19. Hsue B., Masters P. S. 1999; Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. Journal of Virology 73:6128–6135
    [Google Scholar]
  20. Izeta A., Smerdou C., Alonso S., Pénzes Z., Mendez A., Plana-Durán J., Enjuanes L. 1999; Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. Journal of Virology 73:1535–1545
    [Google Scholar]
  21. Koetzner C. A., Parker M. M., Ricard C. S., Sturman L. S., Masters P. S. 1992; Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. Journal of Virology 66:1841–1848
    [Google Scholar]
  22. Kuo L., Godeke G. J., Raamsman M. J., Masters P. S., Rottier P. J. 2000; Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology 74:1393–1406
    [Google Scholar]
  23. Lai M. M., Cavanagh D. 1997; The molecular biology of coronaviruses. Advances in Virus Research 48:1–100
    [Google Scholar]
  24. Liao C. L., Lai M. M. C. 1992; RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. Journal of Virology 66:6117–6124
    [Google Scholar]
  25. Liao C.-L., Lai M. M. C. 1994; Requirement of the 5′-end genomic sequence as an upstream cis -acting element for coronavirus subgenomic mRNA transcription. Journal of Virology 68:4727–4737
    [Google Scholar]
  26. Lin Y. J., Liao C. L., Lai M. M. 1994; Identification of the cis -acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. Journal of Virology 68:8131–8140
    [Google Scholar]
  27. Makino S., Lai M. M. C. 1989; High-frequency leader sequence switching during coronavirus defective interfering RNA replication. Journal of Virology 63:5285–5292
    [Google Scholar]
  28. Martin C. T., Coleman J. E. 1987; Kinetic analysis of T7 RNA polymerase–promoter interactions with small synthetic promoters. Biochemistry 26:2690–2696
    [Google Scholar]
  29. Masters P. S. 1999; Reverse genetics of the largest RNA viruses. Advances in Virus Research 53:245–264
    [Google Scholar]
  30. Masters P. S., Koetzner C. A., Kerr C. A., Heo Y. 1994; Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus. Journal of Virology 68:328–337
    [Google Scholar]
  31. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. 1987; Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Research 15:8783–8798
    [Google Scholar]
  32. Mockett B., Binns M. M., Boursnell M. E. G., Skinner M. A. 1992; Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization. Journal of General Virology 73:2661–2668
    [Google Scholar]
  33. Molenkamp R., Rozier B. C., Greve S., Spaan W. J., Snijder E. J. 2000; Isolation and characterization of an arterivirus defective interfering RNA genome. Journal of Virology 74:3156–3165
    [Google Scholar]
  34. Moss B. 1992; Poxviruses as eukaryotic expression vectors. Seminars in Virology 3:277–283
    [Google Scholar]
  35. Moss B. 1996; Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences, USA 93:11341–11348
    [Google Scholar]
  36. Pattnaik A. K., Ball L. A., LeGrone A. W., Wertz G. W. 1992; Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69:1011–1020
    [Google Scholar]
  37. Peng D., Koetzner C. A., Masters P. S. 1995a; Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination. Journal of Virology 69:3449–3457
    [Google Scholar]
  38. Peng D., Koetzner C. A., McMahon T., Zhu Y., Masters P. S. 1995b; Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. Journal of Virology 69:5475–5484
    [Google Scholar]
  39. Pénzes Z., Tibbles K., Shaw K., Britton P., Brown T. D. K., Cavanagh D. 1994; Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus. Virology 203:286–293
    [Google Scholar]
  40. Pénzes Z., Wroe C., Brown T. D., Britton P., Cavanagh D. 1996; Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame. Journal of Virology 70:8660–8668
    [Google Scholar]
  41. Phillips J. J., Chua M. M., Lavi E., Weiss S. R. 1999; Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. Journal of Virology 73:7752–7760
    [Google Scholar]
  42. Qingzhong Y., Barrett T., Brown T. D. K., Cook J. K. A., Green P., Skinner M. A., Cavanagh D. 1994; Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 12:569–573
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  44. Sanchez C. M., Izeta A., Sanchez-Morgado J. M., Alonso S., Sola I., Balasch M., Plana-Duran J., Enjuanes L. 1999; Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. Journal of Virology 73:7607–7618
    [Google Scholar]
  45. Siddell S. G. 1995; The Coronaviridae. In The Coronaviridae pp 1–10 Edited by Siddell S. G. New York: Plenum;
    [Google Scholar]
  46. Somogyi P., Frazier J., Skinner M. A. 1993; Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197:439–444
    [Google Scholar]
  47. Stern D. F., Kennedy S. I. T. 1980; Coronavirus multiplication strategy. I. Identification and characterization of virus-specific RNA. Journal of Virology 34:665–674
    [Google Scholar]
  48. Stirrups K., Shaw K., Evans S., Dalton K., Cavanagh D., Britton P. 2000a; Leader switching occurs during the rescue of defective RNAs by heterologous strains of the coronavirus infectious bronchitis virus. Journal of General Virology 81:791–801
    [Google Scholar]
  49. Stirrups K., Shaw K., Evans S., Dalton K., Casais R., Cavanagh D., Britton P. 2000b; Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. Journal of General Virology 81:1687–1698
    [Google Scholar]
  50. van der Most R. G., Bredenbeek P. J., Spaan W. J. M. 1991; A domain at the 3′ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. Journal of Virology 65:3219–3226
    [Google Scholar]
  51. van der Most R. G., Heijnen L., Spaan W. J. M., de Groot R. J. 1992; Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Research 20:3375–3381
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2855
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error