The UL34 gene product of herpes simplex virus type 2 is a tail-anchored type II membrane protein that is significant for virus envelopment Free

Abstract

The UL34 gene of herpes simplex virus type 2 (HSV-2) is highly conserved in the herpesvirus family. The UL34 gene product was identified In lysates of HSV-2-infected cells as protein species with molecular masses of 31 and 32·5 kDa, the latter being a phosphorylated product. Synthesis of these proteins occurred at late times post-infection and was highly dependent on viral DNA synthesis. Immunofluorescence assays revealed that the UL34 protein was localized in the cytoplasm in a continuous net-like structure, closely resembling the staining pattern of the endoplasmic reticulum (ER), in both HSV-2-infected cells and in cells transiently expressing UL34 protein. Deletion mutant analysis showed that this colocalization required the C terminus of the UL34 protein. The UL34 protein associated with virions but not with A, B or C capsids. We treated virions, HSV-2-infected cells and cells expressing the UL34 protein with a protease in order to examine the topology of the UL34 protein. In addition, we constructed UL34 deletion mutant proteins and examined their intracellular localization. Our data strongly support the hypothesis that the UL34 protein is inserted into the viral envelope as a tail-anchored type II membrane protein and is significant for virus envelopment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-10-2397
2000-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/10/0812397a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-10-2397&mimeType=html&fmt=ahah

References

  1. Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B. 1992; Primary structure of the herpesvirus saimiri genome. Journal of Virology 66:5047–5058
    [Google Scholar]
  2. Bear R., Barkier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310:207–211
    [Google Scholar]
  3. Brideau A. D., Banfield B. W., Enquist L. W. 1998; The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. Journal of Virology 72:4560–4570
    [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cherny R., Horsnell T., Hutchinson C. A.III., Kouzarides T., Martignetti J. A., Preddie E., Satchwell S. C., Tomlinson P., Weston K. M., Barrell B. G. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD 169. Current Topics in Microbiology and Immunology 154:125–169
    [Google Scholar]
  5. Cockerell A. S., Muggeridge M. I. 1998; Herpes simplex virus type 2 UL45 is a type II membrane protein. Journal of Virology 72:4430–4433
    [Google Scholar]
  6. Daikoku T., Yamashita Y., Tsurumi T., Maeno K., Nishiyama Y. 1993; Purification and biochemical characterization of the protein kinase encoded by the US3 gene of herpes simplex virus type 2. Journal of General Virology 73:303–311
    [Google Scholar]
  7. Daikoku T., Kurachi R., Tsurumi T., Nishiyama Y. 1994; Identification of a target protein of US3 kinase of herpes simplex virus type 2. Journal of General Virology 75:2065–2068
    [Google Scholar]
  8. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  9. Dolan A., Jamieson F. E., Cunningham C., Barnett B. C., McGeoch D. J. 1998; The genome sequence of herpes simplex virus type 2. Journal of Virology 72:2010–2021
    [Google Scholar]
  10. Frangioni J. V., Beahm P. H., Shifrin V., Jost C. A., Neel B. G. 1992; The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68:545–560
    [Google Scholar]
  11. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51
    [Google Scholar]
  12. Kutay U., Hartmann E., Rapoport T. A. 1993; A class of membrane proteins with a C-terminal anchor. Trends in Cell Biology 3:72–75
    [Google Scholar]
  13. Linstedt A. D., Foguet M., Renz M., Seelig H. P., Glick B. S., Hauri H. P. 1995; A C-terminally anchored Golgi protein is inserted into the endoplasmic reticulum and then transported to the Golgi apparatus. Proceedings of the National Academy of Sciences, USA 92:5102–5105
    [Google Scholar]
  14. Lukas J. R., Aigner M., Denk M., Heinzl H., Buriun M., Mayr R. 1998; Carbocyanine postmortem neuronal tracing: influence of different parameters on tracing distance c with immunocytochemistry. Journal of Histochemistry and Cytochemistry 46:901–910
    [Google Scholar]
  15. Nicholas J. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. Journal of Virology 70:5975–5989
    [Google Scholar]
  16. Nii S., Morgan C., Rose H. M. 1968; Electron microscopy of herpes simplex virus. II. Sequence of development. Journal of Virology 2:517–536
    [Google Scholar]
  17. Nishiyama Y., Yamada Y., Kurachi R., Daikoku T. 1992; Construction of a US3 lacZ insertion mutant of herpes simplex virus type 2 and characterization of its phenotype in vitro and in vivo. Virology 190:256–268
    [Google Scholar]
  18. Pfitzner A. J., Tsai E. C., Strominger J. L., Speck S. H. 1987; Isolation and characterization of cDNA clones corresponding to transcripts from the Bam HI H and F region of the Epstein–Barr virus genome. Journal of Virology 61:2902–2909
    [Google Scholar]
  19. Purves F. C., Spector D., Roizman B. 1991; The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. Journal of Virology 65:5757–5764
    [Google Scholar]
  20. Purves F. C., Spector D., Roizman B. 1992; UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. Journal of Virology 66:4295–4303
    [Google Scholar]
  21. Rixon F. J. 1993; Structure and assembly of herpesviruses. Seminars in Virology 4:135–144
    [Google Scholar]
  22. Roizman B. 1996; The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proceedings of the National Academy of Sciences USA: 93:11307–11312
    [Google Scholar]
  23. Roizman B., Sears A. E. 1996; Herpes simplex viruses and their replication. In Fields Virology pp 1043–1107 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  24. Roller R. J., Roizman B. 1991; Herpes simplex virus 1 RNA binding protein US11 negatively regulates the accumulation of a truncated viral mRNA. Journal of Virology 65:5873–5879
    [Google Scholar]
  25. Roller R. J., Zhou Y., Schnetzer R., Ferguson J., Desalvo D. 2000; Herpes simplex virus type 1 UL34 gene product is required for viral envelopment. Journal of Virology 74:117–129
    [Google Scholar]
  26. Stackpole C. W. 1969; Herpes-type virus of the frog renal adenocarcinoma. I. Virus development in tumor transplants maintained at low temperature. Journal of Virology 4:75–93
    [Google Scholar]
  27. Terasaki M., Jaffe L. A. 1991; Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. Journal of Cell Biology 114:929–940
    [Google Scholar]
  28. Terasaki M., Song J. D., Wong J. R., Weiss M. J., Chen L. B. 1984; Localization of endoplasmic reticulum in living and glutaraldehyde fixed cells with fluorescent dyes. Cell 38:101–108
    [Google Scholar]
  29. Whealy M. E., Cars J. P., Meade R. P., Robbins A. K., Enquist L. W. 1991; Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. Journal of Virology 65:1066–1081
    [Google Scholar]
  30. Whitley P., Grahn E., Kutay U., Rapoport T. A., von Heijne G. 1996; A 12-residue-long polyleucine tail is sufficient to anchor synaptobrevin to the endoplasmic reticulum membrane. Journal of Biological Chemistry 271:7583–7586
    [Google Scholar]
  31. Ye G. J., Vaughan K. T., Vallee R. B., Roizman B. 2000; The herpes simplex virus 1 UL34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. Journal of Virology 74:1355–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-10-2397
Loading
/content/journal/jgv/10.1099/0022-1317-81-10-2397
Loading

Data & Media loading...

Most cited Most Cited RSS feed