The open reading frame B438L, located within the RI B fragment of the African swine fever virus genome, is predicted to encode a protein of 438 amino acids with a molecular mass of 49·3 kDa. It presents a cell attachment RGD (Arg–Gly–Asp) motif but no other significant similarity to protein sequences in databases. Northern blot and primer extension analysis showed that B438L is transcribed only at late times during virus infection. The B438L gene product has been expressed in , purified and used as an antigen for antibody production. The rabbit antiserum specific for pB438L recognized a protein of about 49 kDa in virus-infected cell extracts. This protein was synthesized late in infection by all the virus strains tested, was located in cytoplasmic virus factories and appeared as a structural component of purified virus particles.


Article metrics loading...

Loading full text...

Full text loading...



  1. Almazán, F., Rodrı́guez, J. M., Andrés, G., Pérez, R., Viñuela, E. & Rodrı́guez, J. F. (1992). Transcriptional analysis of multigene family 110 of African swine fever virus. Journal of Virology 66, 6655-6667. [Google Scholar]
  2. Almazán, F., Rodrı́guez, J. M., Angulo, A., Viñuela, E. & Rodrı́guez, J. F. (1993). Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. Journal of Virology 67, 553-556. [Google Scholar]
  3. Andrés, G., Simón-Mateo, C. & Viñuela, E. (1997). Assembly of African swine fever virus: role of polyprotein pp220. Journal of Virology 71, 2331-2341. [Google Scholar]
  4. Andrés, G., Garcı́a-Escudero, R., Simón-Mateo, C. & Viñuela, E. (1998). African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. Journal of Virology 72, 8988-9001. [Google Scholar]
  5. Breese, S. S. & DeBoer, C. J. (1966). Electron microscope observations of ASFV in tissue culture cells. Virology 28, 420-428.[CrossRef] [Google Scholar]
  6. Brookes, S. M., Sun, H., Dixon, L. K. & Parkhouse, R. M. E. (1998). Characterization of African swine fever virion proteins j5R and j13L: immuno-localization in virus particles and assembly sites. Journal of General Virology 79, 1179-1188. [Google Scholar]
  7. Carrascosa, J. L., Carazo, J. M., Carrascosa, A. L., Garcı́a, N., Santisteban, A. & Viñuela, E. (1984). General morphology and capsid fine structure of African swine fever virus particles. Virology 132, 160-172.[CrossRef] [Google Scholar]
  8. Carrascosa, A. L., del Val, M., Santarén, J. F. & Viñuela, E. (1985). Purification and properties of African swine fever virus. Journal of Virology 54, 337-344. [Google Scholar]
  9. Carrascosa, A. L., Sastre, I. & Viñuela, E. (1991). African swine fever virus attachment protein. Journal of Virology 65, 2283-2289. [Google Scholar]
  10. Chomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532-537. [Google Scholar]
  11. Costa, J. (1990). In Molecular Biology of Iridoviruses, pp. 247–270. Edited by G. Darai. Boston: Kluwer Academic.
  12. Douillard, J. Y., Hoffman, T. & Herberman, R. B. (1980). Enzyme-linked immunosorbent assay for screening monoclonal antibody production: use of intact cells as antigen. Journal of Immunological Methods 39, 309-316.[CrossRef] [Google Scholar]
  13. Esteves, A., Marques, M. I. & Costa, J. V. (1986). Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology 152, 192-206.[CrossRef] [Google Scholar]
  14. Garcı́a-Beato, R., Salas, M. L., Viñuela, E. & Salas, J. (1992). Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188, 637-649.[CrossRef] [Google Scholar]
  15. Hess, W. R. (1981). African swine fever: a reassessment. Advances in Veterinary Science and Comparative Medicine 25, 39-69. [Google Scholar]
  16. Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132.[CrossRef] [Google Scholar]
  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef] [Google Scholar]
  18. Martı́nez-Pomares, L., Simón-Mateo, C., López-Otı́n, C. & Viñuela, E. (1997). Characterization of the African swine fever virus structural protein p14·5: a DNA binding protein. Virology 229, 201-211.[CrossRef] [Google Scholar]
  19. Pearson, W. R. & Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85, 2444-2448.[CrossRef] [Google Scholar]
  20. Rodrı́guez, J. M., Yáñez, R. J., Pan, R., Rodrı́guez, J. F., Salas, M. L. & Viñuela, E. (1994). Multigene families in African swine fever virus: family 505. Journal of Virology 68, 2746-2751. [Google Scholar]
  21. Rojo, G., Garcı́a-Beato, R., Viñuela, E., Salas, M. L. & Salas, J. (1999). Replication of African swine fever virus DNA in infected cells. Virology 257, 524-536.[CrossRef] [Google Scholar]
  22. Salas, J., Salas, M. L. & Viñuela, E. (1999). African swine fever virus: a missing link between poxviruses and iridoviruses? In Origin and Evolution of Viruses, pp. 467-480. Edited by E. Domingo, R. G. Webster & J. J. Holland. London: Academic Press.
  23. Simón-Mateo, C., Andrés, G. & Viñuela, E. (1993). Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus. EMBO Journal 12, 2977-2987. [Google Scholar]
  24. Simón-Mateo, C., Andrés, G., Almazán, F. & Viñuela, E. (1997). Proteolytic processing in African swine fever virus: evidence for a new structural polyprotein, pp62. Journal of Virology 71, 5799-5804. [Google Scholar]
  25. Studier, F. W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology 219, 37-44.[CrossRef] [Google Scholar]
  26. Viñuela, E. (1987). Molecular biology of African swine fever virus. In African Swine Fever, pp. 31-49. Edited by Y. Becker. Boston: Martinus Nijhoff.
  27. Webb, J. H., Mayer, R. J. & Dixon, L. K. (1999). A lipid modified ubiquitin is packaged into particles of several enveloped viruses. FEBS Letters 444, 136-139.[CrossRef] [Google Scholar]
  28. Yáñez, R. J., Rodrı́guez, J. M., Nogal, M. L., Yuste, L., Enrı́quez, C., Rodrı́guez, J. F. & Viñuela, E. (1995). Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208, 249-278.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error