1887

Abstract

The vaccinia virus (VV) A27L gene encodes a 14 kDa protein that is required for the formation of intracellular enveloped virus (IEV) and, consequently, normal sized plaques. Data presented here show that A27L plays an additional role in VV assembly. When cells were infected with the VV WR32-7/Ind 14K, under conditions that repress A27L expression, transport of intracellular mature virus (IMV) from virus factories was inhibited and some IMV was found in aberrant association with virus crescents. In contrast, other VV mutants (vΔB5R and vΔF13L) that are defective in IEV formation produce IMV particles that are transported out of virus factories. This indicated a specific role for A27L in IMV transport. Induction of A27L expression at 10 h post-infection promoted the dispersal of clustered IMV particles, but only when microtubules were intact. Formation of IEV particles was also impaired when cells were infected with WR32-7/14K, a VV strain expressing a mutated form of the A27L protein; however, this mutation did not inhibit intracellular transport of IMV particles. Collectively, these data define two novel aspects of VV morphogenesis. Firstly, A27L is required for both IMV transport and the process of envelopment that leads to IEV formation. Secondly, movement of IMV particles between the virus factory and the site of IEV formation is microtubule-dependent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-47
2000-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810047a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-47&mimeType=html&fmt=ahah

References

  1. Alves de Matos, A. P. & Carvalho, Z. G. (1993). African swine fever virus interaction with microtubules. Biology of the Cell 78, 229-234.[CrossRef] [Google Scholar]
  2. Baldick, C. J. & Moss, B. (1987). Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology 156, 138-145.[CrossRef] [Google Scholar]
  3. Blasco, R. & Moss, B. (1991). Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. Journal of Virology 65, 5910-5920. [Google Scholar]
  4. Carvalho, Z. G., Alves De Matos, A. P. & Rodrigues-Pousada, C. (1988). Association of African swine fever virus with the cytoskeleton. Virus Research 11, 175-192.[CrossRef] [Google Scholar]
  5. Chung, C., Hsiao, J., Chang, Y. & Chang, W. (1998). A27L mediates vaccinia virus interaction with cell surface heparan sulfate. Journal of Virology 72, 1577-1585. [Google Scholar]
  6. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. (1995). Actin-based motility of vaccinia virus. Nature 378, 636-638.[CrossRef] [Google Scholar]
  7. Cudmore, S., Reckmann, I., Griffiths, G. & Way, M. (1996). Vaccinia virus: a model system for actin–membrane interactions. Journal of Cell Science 109, 1739-1747. [Google Scholar]
  8. Dales, S. & Mosbach, E. H. (1968). Vaccinia as a model for membrane biogenesis. Virology 35, 564-583.[CrossRef] [Google Scholar]
  9. Dales, S. & Siminovitch, L. (1961). The development of vaccinia virus in Earles L strain cells as examined by electron microscopy. Journal of Biophysical and Biochemical Cytology 10, 475-503.[CrossRef] [Google Scholar]
  10. Dallo, S. & Esteban, M. (1987). Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159, 408-422.[CrossRef] [Google Scholar]
  11. Dallo, S., Rodriguez, J. F. & Esteban, M. (1987). A 14K envelope protein of vaccinia virus with an important role in virus–host cell interactions is altered during virus persistence and determines the plaque size phenotype of the virus. Virology 159, 423-432.[CrossRef] [Google Scholar]
  12. Doms, R. W., Blumenthal, R. & Moss, B. (1990). Fusion of intra- and extracellular forms of vaccinia virus with the cell membrane. Journal of Virology 64, 4884-4892. [Google Scholar]
  13. Duncan, S. A. & Smith, G. L. (1992). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. Journal of Virology 66, 1610-1621. [Google Scholar]
  14. Engelstad, M., Howard, S. T. & Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188, 801-810.[CrossRef] [Google Scholar]
  15. Gong, S. C., Lai, C. F., Dallo, S. & Esteban, M. (1989). A single point mutation of Ala-25 to Asp in the 14,000-Mr envelope protein of vaccinia virus induces a size change that leads to the small plaque size phenotype of the virus. Journal of Virology 63, 4507-4514. [Google Scholar]
  16. Gong, S. C., Lai, C. F. & Esteban, M. (1990). Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology 178, 81-91.[CrossRef] [Google Scholar]
  17. Grosenbach, D. W. & Hruby, D. E. (1998). Analysis of a vaccinia virus mutant expressing a non-palmitoylated form of p37, a mediator of virion envelopment. Journal of Virology 72, 5108-5120. [Google Scholar]
  18. Herzog, M., Draeger, A., Ehler, E. & Small, V. J. (1994). Immunofluorescence microscopy of the cytoskeleton: double and triple immunofluorescence. In Cell Biology: A Laboratory Handbook, pp. 355–360. San Diego: Academic Press.
  19. Hiller, G. & Weber, K. (1982). A phosphorylated basic vaccinia virus virion polypeptide of molecular weight 11,000 is exposed on the surface of mature particles and interacts with actin-containing cytoskeletal elements. Journal of Virology 44, 647-657. [Google Scholar]
  20. Hiller, G. & Weber, K. (1985). Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. Journal of Virology 55, 651-659. [Google Scholar]
  21. Hiller, G., Weber, K., Schneider, L., Parajsz, C. & Jungwirth, C. (1979). Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98, 142-153.[CrossRef] [Google Scholar]
  22. Hiller, G., Eibl, H. & Weber, K. (1981). Characterization of intracellular and extracellular vaccinia virus variants: N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine interferes with cytoplasmic virus dissemination and release. Journal of Virology 39, 903-913. [Google Scholar]
  23. Hirt, P., Hiller, G. & Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. Journal of Virology 58, 757-764. [Google Scholar]
  24. Hollinshead, M., Vanderplasschen, A., Smith, G. L. & Vaux, D. J. (1999). Vaccinia virus intracellular mature virions contain only one lipid membrane. Journal of Virology 73, 1503-1517. [Google Scholar]
  25. Isaacs, S. N., Wolffe, E. J., Payne, L. G. & Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-Kilodalton class I membrane glycoprotein component of the extracellular virus envelope. Journal of Virology 66, 7217-7224. [Google Scholar]
  26. Jensen, O. N., Houthaeve, T., Shevchenko, A., Cudmore, S., Ashford, T., Mann, M., Griffiths, G. & Krijnse-Locker, J. (1996). Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. Journal of Virology 70, 7485-7497. [Google Scholar]
  27. Joklik, W. K. & Becker, Y. (1964). The replication and coating of vaccinia DNA. Journal of Molecular Biology 10, 452-474.[CrossRef] [Google Scholar]
  28. Mathew, E., Sanderson, C. M., Hollinshead, M. & Smith, G. L. (1998). The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. Journal of Virology 72, 2429-2438. [Google Scholar]
  29. Morgan, C. (1976). Vaccinia virus reexamined: development and release. Virology 73, 43-58.[CrossRef] [Google Scholar]
  30. Paez, E., Dallo, S. & Esteban, M. (1987). Virus attenuation and identification of structural proteins of vaccinia virus that are selectively modified during virus persistence. Journal of Virology 61, 2642-2647. [Google Scholar]
  31. Parkinson, J. E. & Smith, G. L. (1994). Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology 204, 376-390.[CrossRef] [Google Scholar]
  32. Payne, L. G. & Norrby, E. (1976). Presence of haemagglutinin in the envelope of extracellular vaccinia virus particles. Journal of General Virology 32, 63-72.[CrossRef] [Google Scholar]
  33. Rodriguez, J. F. & Smith, G. L. (1990a). Inducible gene expression from vaccinia virus vectors. Virology 177, 239-250.[CrossRef] [Google Scholar]
  34. Rodriguez, J. F. & Smith, G. L. (1990b). IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. Nucleic Acids Research 18, 5347-5351.[CrossRef] [Google Scholar]
  35. Rodriguez, J. F., Paez, E. & Esteban, M. (1987). A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. Journal of Virology 61, 395-404. [Google Scholar]
  36. Rodriguez, D., Rodriguez, J. R. & Esteban, M. (1993). The vaccinia virus 14-kilodalton fusion protein forms a stable complex with the processed protein encoded by the vaccinia virus A17L gene. Journal of Virology 67, 3435-3440. [Google Scholar]
  37. Rodriguez, D., Esteban, M. & Rodriguez, J. R. (1995). Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. Journal of Virology 69, 4640-4648. [Google Scholar]
  38. Rodriguez, J. R., Risco, C., Carrascosa, J. L., Esteban, M. & Rodriguez, D. (1997). Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. Journal of Virology 71, 1821-1833. [Google Scholar]
  39. Roper, R. L., Payne, L. G. & Moss, B. (1996). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. Journal of Virology 70, 3753-3762. [Google Scholar]
  40. Roper, R. L., Wolffe, E. J., Weisberg, A. & Moss, B. (1998). The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. Journal of Virology 72, 4192-4204. [Google Scholar]
  41. Sanderson, C. M., Frischkneht, F., Way, M., Hollinshead, M. & Smith, G. L. (1998). Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. Journal of General Virology 79, 1415-1425. [Google Scholar]
  42. Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G. & Griffiths, G. (1994). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. Journal of Virology 68, 130-147. [Google Scholar]
  43. Shida, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150, 451-462.[CrossRef] [Google Scholar]
  44. Sodeik, B., Doms, R. W., Ericsson, M., Hiller, G., Machamer, C. E., van’t Hof, W., van Meer, G., Moss, B. & Griffiths, G. (1993). Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. Journal of Cell Biology 121, 521-541.[CrossRef] [Google Scholar]
  45. Stokes, G. V. (1976). High-voltage electron microscope study of the release of vaccinia virus from whole cells. Journal of Virology 18, 636-643. [Google Scholar]
  46. Takahashi, T., Oie, M. & Ichihashi, Y. (1994). N-terminal amino acid sequences of vaccinia virus structural proteins. Virology 202, 844-852.[CrossRef] [Google Scholar]
  47. Tartaglia, J., Piccini, A. & Paoletti, E. (1986). Vaccinia virus rifampicin-resistance locus specifies a late 63,000 Da gene product. Virology 150, 45-54.[CrossRef] [Google Scholar]
  48. Tooze, J., Hollinshead, M., Reis, B., Radsak, K. & Kern, H. (1993). Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. European Journal of Cell Biology 60, 163-178. [Google Scholar]
  49. Wolffe, E. J., Moore, D. M., Peters, P. J. & Moss, B. (1996). Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. Journal of Virology 70, 2797-2808. [Google Scholar]
  50. Wolffe, E. J., Katz, E., Weisberg, A. & Moss, B. (1997). The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. Journal of Virology 71, 3904-3915. [Google Scholar]
  51. Wolffe, E. J., Weisberg, A. S. & Moss, B. (1998). Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244, 20-26.[CrossRef] [Google Scholar]
  52. Zhang, Y. & Moss, B. (1992). Immature viral envelope formation is interrupted at the same stage by lac operator-mediated repression of vaccinia virus gene D13L and by the drug rifampicin. Virology 187, 645-653. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-47
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-47
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error