1887

Abstract

We showed previously that transgenic plants with the green fluorescent protein (GFP) gene fused to segments of the nucleocapsid (N) gene of tomato spotted wilt virus (TSWV) displayed post-transcriptional gene silencing of the GFP and N gene segments and resistance to TSWV. These results suggested that a chimeric transgene composed of viral gene segments might confer multiple virus resistance in transgenic plants. To test this hypothesis and to determine the minimum length of the N gene that could trans-inactivate the challenging TSWV, transgenic plants were developed that contained GFP fused with N gene segments of 24–453 bp. Progeny from these plants were challenged with: (i) a chimeric tobacco mosaic virus containing the GFP gene, (ii) a chimeric tobacco mosaic virus with GFP plus the N gene of TSWV and (iii) TSWV. A number of transgenic plants expressing the transgene with GFP fused to N gene segments from 110 to 453 bp in size were resistant to these viruses. Resistant plants exhibited post-transcriptional gene silencing. In contrast, all transgenic lines with transgenes consisting of GFP fused to N gene segments of 24 or 59 bp were susceptible to TSWV, even though the transgene was post-transcriptionally silenced. Thus, virus resistance and post-transcriptional gene silencing were uncoupled when the N gene segment was 59 bp or less. These results provide evidence that multiple virus resistance is possible through the simple strategy of linking viral gene segments to a silencer DNA such as GFP.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-235
2000-01-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810235a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-235&mimeType=html&fmt=ahah

References

  1. Baulcombe, D. C. ( 1996a; ). Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833-1844.[CrossRef]
    [Google Scholar]
  2. Baulcombe, D. C. ( 1996b; ). RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Molecular Biology 32, 79-88.[CrossRef]
    [Google Scholar]
  3. Baulcombe, D. C. & English, J. J. ( 1996; ). Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Current Opinion in Biotechnology 7, 173-180.[CrossRef]
    [Google Scholar]
  4. Casper, S. J. & Holt, C. A. ( 1996; ). Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173, 69-73.[CrossRef]
    [Google Scholar]
  5. Dawson, W. D. ( 1996; ). Gene silencing and virus resistance: a common mechanism. Trends in Plant Science 1, 107-108.[CrossRef]
    [Google Scholar]
  6. de Haan, P., Wagemakers, L., Peters, D. & Goldbach, R. ( 1990; ). The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology 71, 1001-1007.[CrossRef]
    [Google Scholar]
  7. de Haan, P., Kormelink, R., Resende, R. de O., van Poelwijk, F., Peters, D. & Goldbach, R. ( 1991; ). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72, 2207-2216.[CrossRef]
    [Google Scholar]
  8. Dougherty, W. G. & Parks, T. D. ( 1995; ). Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7, 399-405.[CrossRef]
    [Google Scholar]
  9. English, J. J., Mueller, E. & Baulcombe, D. C. ( 1996; ). Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8, 179-188.[CrossRef]
    [Google Scholar]
  10. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 6-13.[CrossRef]
    [Google Scholar]
  11. Goodwin, J., Chapman, K., Swaney, S., Parks, T. D., Wernsman, E. A. & Dougherty, W. G. ( 1996; ). Genetic and biochemical dissection of transgenic RNA-mediated virus resistance. Plant Cell 8, 95-105.[CrossRef]
    [Google Scholar]
  12. Gray, J., Picton, S., Shabbeer, J., Schuch, W. & Grierson, D. ( 1992; ). Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Molecular Biology 19, 69-87.[CrossRef]
    [Google Scholar]
  13. Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S. & Watson, C. F. ( 1991; ). Does co-suppression of sense genes in transgenic plants involve antisense RNA? Trends in Biotechnology 9, 122-123.
    [Google Scholar]
  14. Grumet, R. ( 1995; ). Genetic engineering for crop virus resistance. Hortscience 30, 449-456.
    [Google Scholar]
  15. Holt, C. A. & Beachy, R. N. ( 1991; ). In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181, 109-117.[CrossRef]
    [Google Scholar]
  16. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G. & Fraley, R. T. ( 1985; ). A simple and general method for transferring genes into plants. Science 227, 1229-1231.[CrossRef]
    [Google Scholar]
  17. Jan, F.-J. (1998). Roles of nontarget DNA and viral gene length in influencing multi-virus resistance through homology-dependent gene silencing. PhD dissertation, Cornell University, NY, USA.
  18. Kormelink, R., de Haan, P., Peters, D. & Goldbach, R. ( 1992a; ). Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. Journal of General Virology 73, 687-693.[CrossRef]
    [Google Scholar]
  19. Kormelink, R., de Haan, P., Meurs, C., Peters, D. & Goldbach, R. ( 1992b; ). The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. Journal of General Virology 73, 2795-2804.[CrossRef]
    [Google Scholar]
  20. Kormelink, R., Storms, M., Van Lent, J., Peters, D. & Goldbach, R. ( 1994; ). Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56-65.[CrossRef]
    [Google Scholar]
  21. Law, M. D., Speck, J. & Moyer, J. W. ( 1991; ). Nucleotide sequence of the 3′ non-coding region and N gene of the S RNA of a serologically distinct tospovirus. Journal of General Virology 72, 2597-2601.[CrossRef]
    [Google Scholar]
  22. Law, M. D., Speck, J. & Moyer, J. W. ( 1992; ). The M RNA of impatiens necrotic spot Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188, 732-741.[CrossRef]
    [Google Scholar]
  23. Lindbo, J. A., Silva, R. L., Proebsting, W. M. & Dougherty, W. G. ( 1993; ). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749-1759.[CrossRef]
    [Google Scholar]
  24. Lomonossoff, G. P. ( 1995; ). Pathogen-derived resistance to plant viruses. Annual Review of Phytopathology 33, 323-343.[CrossRef]
    [Google Scholar]
  25. Maiss, E., Ivanova, L., Breyel, E. & Adam, G. ( 1991; ). Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus. Journal of General Virology 72, 461-464.[CrossRef]
    [Google Scholar]
  26. Marano, M. R. & Baulcombe, D. ( 1998; ). Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus: RNA strand-specific gene silencing? Plant Journal 13, 537-546.[CrossRef]
    [Google Scholar]
  27. Metzlaff, M., O’Dell, M., Cluster, P. D. & Flavell, R. B. ( 1997; ). RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88, 845-854.[CrossRef]
    [Google Scholar]
  28. Montgomery, M. K. & Fire, A. ( 1998; ). Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends in Genetics 14, 255-258.[CrossRef]
    [Google Scholar]
  29. Mueller, E., Gilbert, J., Davenport, G., Brigneti, G. & Baulcombe, D. C. ( 1995; ). Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant Journal 7, 1001-1013.[CrossRef]
    [Google Scholar]
  30. Napoli, C., Lemieux, C. & Jorgensen, R. ( 1990; ). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-290.[CrossRef]
    [Google Scholar]
  31. Pang, S.-Z., Nagpala, P., Wang, M., Slightom, J. L. & Gonsalves, D. ( 1992; ). Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82, 1223-1229.[CrossRef]
    [Google Scholar]
  32. Pang, S.-Z., Slightom, J. L. & Gonsalves, D. ( 1993a; ). The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology 83, 728-733.[CrossRef]
    [Google Scholar]
  33. Pang, S.-Z., Slightom, J. L. & Gonsalves, D. ( 1993b; ). Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot Tospoviruses. Biotechnology 11, 819-824.[CrossRef]
    [Google Scholar]
  34. Pang, S.-Z., Jan, F.-J., Carney, K., Stout, J., Tricoli, D. M., Quemada, H. D. & Gonsalves, D. ( 1996; ). Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant Journal 9, 899-909.[CrossRef]
    [Google Scholar]
  35. Pang, S.-Z., Jan, F.-J. & Gonsalves, D. ( 1997; ). Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proceedings of the National Academy of Sciences, USA 94, 8261-8266.[CrossRef]
    [Google Scholar]
  36. Prins, M. & Goldbach, R. ( 1996; ). RNA-mediated virus resistance in transgenic plants. Archives of Virology 141, 2259-2276.[CrossRef]
    [Google Scholar]
  37. Prins, M., Resende, R. de O., Anker, C., van Schepen, A., de Haan, P. & Goldbach, R. ( 1996; ). Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Molecular Plant–Microbe Interactions 9, 416-418.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Sanford, J. C. & Johnston, S. A. ( 1985; ). The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome. Journal of Theoretical Biology 113, 395-405.[CrossRef]
    [Google Scholar]
  40. Seymour, G. B., Fray, R. G., Hill, P. & Tucker, G. A. ( 1993; ). Down-regulation of two non-homologous tomato genes with a single chimaeric sense gene construct. Plant Molecular Biology 23, 1-9.[CrossRef]
    [Google Scholar]
  41. Sijen, T., Wellink, J., Hiriart, J. B. & van Kammen, A. ( 1996; ). RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8, 2277-2294.[CrossRef]
    [Google Scholar]
  42. Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A. & Dougherty, W. G. ( 1994; ). Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6, 1441-1453.[CrossRef]
    [Google Scholar]
  43. Tanzer, M. M., Thompson, W. F., Law, M. D., Wernsman, E. A. & Uknes, S. ( 1997; ). Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell 9, 1411-1423.[CrossRef]
    [Google Scholar]
  44. van den Boogaart, T., Lomonossoff, G. P. & Davies, J. W. ( 1998; ). Can we explain RNA-mediated virus resistance by homology-dependent gene silencing? Molecular Plant–Microbe Interactions 11, 717-723.[CrossRef]
    [Google Scholar]
  45. Waterhouse, P. M., Graham, M. W. & Wang, M. B. ( 1998; ). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95, 13959-13964.[CrossRef]
    [Google Scholar]
  46. Wilson, T. M. A. ( 1993; ). Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proceedings of the National Academy of Sciences, USA 90, 3134-3141.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-235
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-235
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error