We showed previously that transgenic plants with the green fluorescent protein (GFP) gene fused to segments of the nucleocapsid (N) gene of tomato spotted wilt virus (TSWV) displayed post-transcriptional gene silencing of the GFP and N gene segments and resistance to TSWV. These results suggested that a chimeric transgene composed of viral gene segments might confer multiple virus resistance in transgenic plants. To test this hypothesis and to determine the minimum length of the N gene that could trans-inactivate the challenging TSWV, transgenic plants were developed that contained GFP fused with N gene segments of 24–453 bp. Progeny from these plants were challenged with: (i) a chimeric tobacco mosaic virus containing the GFP gene, (ii) a chimeric tobacco mosaic virus with GFP plus the N gene of TSWV and (iii) TSWV. A number of transgenic plants expressing the transgene with GFP fused to N gene segments from 110 to 453 bp in size were resistant to these viruses. Resistant plants exhibited post-transcriptional gene silencing. In contrast, all transgenic lines with transgenes consisting of GFP fused to N gene segments of 24 or 59 bp were susceptible to TSWV, even though the transgene was post-transcriptionally silenced. Thus, virus resistance and post-transcriptional gene silencing were uncoupled when the N gene segment was 59 bp or less. These results provide evidence that multiple virus resistance is possible through the simple strategy of linking viral gene segments to a silencer DNA such as GFP.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baulcombe, D. C. (1996a). Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833-1844.[CrossRef] [Google Scholar]
  2. Baulcombe, D. C. (1996b). RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Molecular Biology 32, 79-88.[CrossRef] [Google Scholar]
  3. Baulcombe, D. C. & English, J. J. (1996). Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Current Opinion in Biotechnology 7, 173-180.[CrossRef] [Google Scholar]
  4. Casper, S. J. & Holt, C. A. (1996). Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173, 69-73.[CrossRef] [Google Scholar]
  5. Dawson, W. D. (1996). Gene silencing and virus resistance: a common mechanism. Trends in Plant Science 1, 107-108.[CrossRef] [Google Scholar]
  6. de Haan, P., Wagemakers, L., Peters, D. & Goldbach, R. (1990). The S RNA segment of tomato spotted wilt virus has an ambisense character. Journal of General Virology 71, 1001-1007.[CrossRef] [Google Scholar]
  7. de Haan, P., Kormelink, R., Resende, R. de O., van Poelwijk, F., Peters, D. & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 72, 2207-2216.[CrossRef] [Google Scholar]
  8. Dougherty, W. G. & Parks, T. D. (1995). Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7, 399-405.[CrossRef] [Google Scholar]
  9. English, J. J., Mueller, E. & Baulcombe, D. C. (1996). Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8, 179-188.[CrossRef] [Google Scholar]
  10. Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 6-13.[CrossRef] [Google Scholar]
  11. Goodwin, J., Chapman, K., Swaney, S., Parks, T. D., Wernsman, E. A. & Dougherty, W. G. (1996). Genetic and biochemical dissection of transgenic RNA-mediated virus resistance. Plant Cell 8, 95-105.[CrossRef] [Google Scholar]
  12. Gray, J., Picton, S., Shabbeer, J., Schuch, W. & Grierson, D. (1992). Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Molecular Biology 19, 69-87.[CrossRef] [Google Scholar]
  13. Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S. & Watson, C. F. (1991). Does co-suppression of sense genes in transgenic plants involve antisense RNA? Trends in Biotechnology 9, 122-123. [Google Scholar]
  14. Grumet, R. (1995). Genetic engineering for crop virus resistance. Hortscience 30, 449-456. [Google Scholar]
  15. Holt, C. A. & Beachy, R. N. (1991).In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181, 109-117.[CrossRef] [Google Scholar]
  16. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G. & Fraley, R. T. (1985). A simple and general method for transferring genes into plants. Science 227, 1229-1231.[CrossRef] [Google Scholar]
  17. Jan, F.-J. (1998).Roles of nontarget DNA and viral gene length in influencing multi-virus resistance through homology-dependent gene silencing. PhD dissertation, Cornell University, NY, USA.
  18. Kormelink, R., de Haan, P., Peters, D. & Goldbach, R. (1992a). Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana rustica plants. Journal of General Virology 73, 687-693.[CrossRef] [Google Scholar]
  19. Kormelink, R., de Haan, P., Meurs, C., Peters, D. & Goldbach, R. (1992b). The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. Journal of General Virology 73, 2795-2804.[CrossRef] [Google Scholar]
  20. Kormelink, R., Storms, M., Van Lent, J., Peters, D. & Goldbach, R. (1994). Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56-65.[CrossRef] [Google Scholar]
  21. Law, M. D., Speck, J. & Moyer, J. W. (1991). Nucleotide sequence of the 3′ non-coding region and N gene of the S RNA of a serologically distinct tospovirus. Journal of General Virology 72, 2597-2601.[CrossRef] [Google Scholar]
  22. Law, M. D., Speck, J. & Moyer, J. W. (1992). The M RNA of impatiens necrotic spot Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188, 732-741.[CrossRef] [Google Scholar]
  23. Lindbo, J. A., Silva, R. L., Proebsting, W. M. & Dougherty, W. G. (1993). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749-1759.[CrossRef] [Google Scholar]
  24. Lomonossoff, G. P. (1995). Pathogen-derived resistance to plant viruses. Annual Review of Phytopathology 33, 323-343.[CrossRef] [Google Scholar]
  25. Maiss, E., Ivanova, L., Breyel, E. & Adam, G. (1991). Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus. Journal of General Virology 72, 461-464.[CrossRef] [Google Scholar]
  26. Marano, M. R. & Baulcombe, D. (1998). Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus: RNA strand-specific gene silencing? Plant Journal 13, 537-546.[CrossRef] [Google Scholar]
  27. Metzlaff, M., O’Dell, M., Cluster, P. D. & Flavell, R. B. (1997). RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88, 845-854.[CrossRef] [Google Scholar]
  28. Montgomery, M. K. & Fire, A. (1998). Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends in Genetics 14, 255-258.[CrossRef] [Google Scholar]
  29. Mueller, E., Gilbert, J., Davenport, G., Brigneti, G. & Baulcombe, D. C. (1995). Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant Journal 7, 1001-1013.[CrossRef] [Google Scholar]
  30. Napoli, C., Lemieux, C. & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-290.[CrossRef] [Google Scholar]
  31. Pang, S.-Z., Nagpala, P., Wang, M., Slightom, J. L. & Gonsalves, D. (1992). Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82, 1223-1229.[CrossRef] [Google Scholar]
  32. Pang, S.-Z., Slightom, J. L. & Gonsalves, D. (1993a). The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology 83, 728-733.[CrossRef] [Google Scholar]
  33. Pang, S.-Z., Slightom, J. L. & Gonsalves, D. (1993b). Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot Tospoviruses. Biotechnology 11, 819-824.[CrossRef] [Google Scholar]
  34. Pang, S.-Z., Jan, F.-J., Carney, K., Stout, J., Tricoli, D. M., Quemada, H. D. & Gonsalves, D. (1996). Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant Journal 9, 899-909.[CrossRef] [Google Scholar]
  35. Pang, S.-Z., Jan, F.-J. & Gonsalves, D. (1997). Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proceedings of the National Academy of Sciences, USA 94, 8261-8266.[CrossRef] [Google Scholar]
  36. Prins, M. & Goldbach, R. (1996). RNA-mediated virus resistance in transgenic plants. Archives of Virology 141, 2259-2276.[CrossRef] [Google Scholar]
  37. Prins, M., Resende, R. de O., Anker, C., van Schepen, A., de Haan, P. & Goldbach, R. (1996). Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Molecular Plant–Microbe Interactions 9, 416-418.[CrossRef] [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Sanford, J. C. & Johnston, S. A. (1985). The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome. Journal of Theoretical Biology 113, 395-405.[CrossRef] [Google Scholar]
  40. Seymour, G. B., Fray, R. G., Hill, P. & Tucker, G. A. (1993). Down-regulation of two non-homologous tomato genes with a single chimaeric sense gene construct. Plant Molecular Biology 23, 1-9.[CrossRef] [Google Scholar]
  41. Sijen, T., Wellink, J., Hiriart, J. B. & van Kammen, A. (1996). RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8, 2277-2294.[CrossRef] [Google Scholar]
  42. Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A. & Dougherty, W. G. (1994). Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6, 1441-1453.[CrossRef] [Google Scholar]
  43. Tanzer, M. M., Thompson, W. F., Law, M. D., Wernsman, E. A. & Uknes, S. (1997). Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell 9, 1411-1423.[CrossRef] [Google Scholar]
  44. van den Boogaart, T., Lomonossoff, G. P. & Davies, J. W. (1998). Can we explain RNA-mediated virus resistance by homology-dependent gene silencing? Molecular Plant–Microbe Interactions 11, 717-723.[CrossRef] [Google Scholar]
  45. Waterhouse, P. M., Graham, M. W. & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95, 13959-13964.[CrossRef] [Google Scholar]
  46. Wilson, T. M. A. (1993). Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proceedings of the National Academy of Sciences, USA 90, 3134-3141.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error