Repression of viral transcription during herpes simplex virus latency Free

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-1
2000-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810001a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-1&mimeType=html&fmt=ahah

References

  1. Ace, C. I., McKee, T. A., Ryan, J. M., Cameron, J. M. & Preston, C. M. (1989). Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression. Journal of Virology 63, 2260-2269. [Google Scholar]
  2. Alvira, M. R., Goins, W. F., Cohen, J. B. & Glorioso, J. G. (1999). Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection. Journal of Virology 73, 3866-3876. [Google Scholar]
  3. Arthur, J. L., Everett, R. D., Brierley, I. & Efstathiou, S. (1998). Disruption of the 5′ and 3′ splice sites flanking the major latency-associated transcripts of herpes simplex type 1: evidence for alternate splicing in lytic and latent infections. Journal of General Virology 79, 107-116. [Google Scholar]
  4. Bates, P. A. & DeLuca, N. A. (1998). The polyserine tract of herpes simplex virus ICP4 is required for normal viral gene expression and growth in murine trigeminal ganglia. Journal of Virology 72, 7115-7124. [Google Scholar]
  5. Bohensky, R. A., Papavassiliou, A. G., Gelman, I. H. & Silverstein, S. (1993). Identification of a promoter mapping within the reiterated sequences that flank the herpes simplex virus type 1 UL region. Journal of Virology 67, 632-642. [Google Scholar]
  6. Bohensky, R. A., Lagunoff, M., Roizman, B., Wagner, E. K. & Silverstein, S. (1995). Two overlapping transcription units which extend across the L–S junction of herpes simplex virus type 1. Journal of Virology 69, 2889-2897. [Google Scholar]
  7. Bruni, R. & Roizman, B. (1996). Open reading frame P – a herpes simplex virus gene repressed during productive infection encodes a protein that binds a splicing factor and reduces synthesis of viral proteins made from spliced mRNA. Proceedings of the National Academy of Sciences, USA 93, 10423-10427.[CrossRef] [Google Scholar]
  8. Cai, W. & Schaffer, P. A. (1989). Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. Journal of Virology 63, 4579-4589. [Google Scholar]
  9. Cai, W. & Schaffer, P. A. (1991). A cellular function can enhance gene expression and plating efficiency of a mutant defective in the gene for ICP0, a transactivating protein of herpes simplex virus type 1. Journal of Virology 65, 4078-4090. [Google Scholar]
  10. Cai, W. & Schaffer, P. A. (1992). Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early and late genes in productively infected cells. Journal of Virology 66, 2904-2915. [Google Scholar]
  11. Cai, W., Astor, T. L., Liptak, L. M., Cho, C., Coen, D. M. & Schaffer, P. A. (1993). The herpes simplex virus type 1 regulatory protein ICP0 enhances viral replication during acute infection and reactivation from latency. Journal of Virology 67, 7501-7512. [Google Scholar]
  12. Carrozza, M. J. & DeLuca, N. A. (1996). Interaction of the viral activator protein ICP4 with TFIID through TAF250. Molecular and Cellular Biology 16, 3085-3093. [Google Scholar]
  13. Chelbi-Alix, M. K. & de The, H. (1999). Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18, 935-941.[CrossRef] [Google Scholar]
  14. Chen, J. & Silverstein, S. (1992). Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. Journal of Virology 66, 2916-2927. [Google Scholar]
  15. Chen, X., Schmidt, M. C., Goins, W. F. & Glorioso, J. C. (1995). Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. Journal of Virology 69, 7899-7908. [Google Scholar]
  16. Chen, S.-H., Kramer, M. F., Schaffer, P. A. & Coen, D. M. (1997). A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. Journal of Virology 71, 5878-5884. [Google Scholar]
  17. Cheung, P., Panning, B. & Smiley, J. R. (1997). Herpes simplex virus immediate-early proteins ICP0 and ICP4 activate the endogenous human α-globin gene in nonerythroid cells. Journal of Virology 71, 1784-1793. [Google Scholar]
  18. Cleary, M. A., Stern, S., Tanaka, M. & Herr, W. (1993). Differential positive control by Oct-1 and Oct-2 – activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment. Genes & Development 7, 72-83.[CrossRef] [Google Scholar]
  19. Clements, G. B. & Stow, N. D. (1989). A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice. Journal of General Virology 70, 2501-2506.[CrossRef] [Google Scholar]
  20. Coen, D. M., Weinheimer, S. P. & McKnight, S. L. (1986). A genetic approach to promoter recognition during trans induction of viral gene expression. Science 234, 53-59.[CrossRef] [Google Scholar]
  21. Coen, D. M., Kosz-Vnenchak, M., Jacobson, J. G., Leib, D. A., Bogard, C. L., Schaffer, P. A., Tyler, K. L. & Knipe, D. M. (1989). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proceedings of the National Academy of Sciences, USA 86, 4736-4740.[CrossRef] [Google Scholar]
  22. Cook, W. J., Lin, S. M., DeLuca, N. A., Moyinhan, E. B. & Coen, D. M. (1995). Induction of transcription by a viral regulatory protein depends on the relative strengths of functional TATA boxes. Molecular and Cellular Biology 15, 4998-5006. [Google Scholar]
  23. Deb, S. P., Deb, S. & Brown, D. R. (1994). Cell-type-specific induction of the UL9 gene of HSV-1 by cell signalling pathway. Biochemical and Biophysical Research Communications 205, 44-51.[CrossRef] [Google Scholar]
  24. DeLuca, N. A. & Schaffer, P. A. (1985). Activation of immediate-early, early and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Molecular and Cellular Biology 5, 558-570. [Google Scholar]
  25. Dent, C. L., Lillycrop, K. A., Estridge, J. K., Thomas, N. S. B. & Latchman, D. S. (1991). The B-cell and neuronal forms of the octamer-binding protein Oct-2 differ in DNA-binding specificity and functional activity. Molecular and Cellular Biology 11, 3925-3930. [Google Scholar]
  26. Deshmane, S. L. & Fraser, N. W. (1989). During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. Journal of Virology 63, 943-947. [Google Scholar]
  27. Devi-Rao, G. B., Goodart, S. A., Hecht, L. M., Rochford, R., Rice, M. A. & Wagner, E. K. (1991). Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts. Journal of Virology 65, 2179-2190. [Google Scholar]
  28. Devi-Rao, G. B., Bloom, D. C., Stevens, J. G. & Wagner, E. K. (1994). Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. Journal of Virology 68, 1271-1282. [Google Scholar]
  29. Dobson, A. T., Margolis, T. P., Sedarati, F., Stevens, J. G. & Feldman, L. T. (1990). A latent, nonpathogenic HSV-1-derived vector stably expresses β-galactosidase in mouse neurons. Neuron 5, 353-360.[CrossRef] [Google Scholar]
  30. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. (1998). The genome sequence of herpes simplex virus type 2. Journal of Virology 72, 2010-2021. [Google Scholar]
  31. Ecob-Prince, M. S. & Hassan, K. (1994). Reactivation of latent herpes simplex virus from explanted dorsal root ganglia. Journal of General Virology 75, 2017-2028.[CrossRef] [Google Scholar]
  32. Ecob-Prince, M. S., Preston, C. M., Rixon, F. J., Hassan, K. & Kennedy, P. G. E. (1993a). Neurons containing latency-associated transcripts are numerous and widespread in dorsal root ganglia following footpad inoculation of mice with herpes simplex virus type 1 mutant in1814. Journal of General Virology 74, 985-994.[CrossRef] [Google Scholar]
  33. Ecob-Prince, M. S., Rixon, F. J., Preston, C. M., Hassan, K. & Kennedy, P. G. E. (1993b). Reactivation in vivo and in vitro of herpes simplex virus from mouse dorsal root ganglia which contain different levels of latency-associated transcripts. Journal of General Virology 74, 995-1002.[CrossRef] [Google Scholar]
  34. Efstathiou, S., Minson, A. C., Field, H. J., Anderson, J. R. & Wildy, P. (1986). Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans. Journal of Virology 57, 446-455. [Google Scholar]
  35. Efstathiou, S., Kemp, S., Darby, G. K. & Minson, A. C. (1989). The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. Journal of General Virology 70, 869-879.[CrossRef] [Google Scholar]
  36. Eissenberg, J. C., Morris, G., Reuter, G. & Harnett, T. (1992). The heterochromatin associated protein HP1 is an essential protein in Drosophila with dosage effects on position effect variegation. Genetics 131, 345-352. [Google Scholar]
  37. Everett, R. D. (1984). Transactivation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO Journal 3, 3135-3141. [Google Scholar]
  38. Everett, R. D. (1985). Activation of cellular promoters during herpes simplex virus infection of biochemically transformed cells. EMBO Journal 4, 1973-1980. [Google Scholar]
  39. Everett, R. D. (1989). Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1. Journal of General Virology 70, 1185-1202.[CrossRef] [Google Scholar]
  40. Everett, R. D. & Maul, G. G. (1994). HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO Journal 13, 5062-5069. [Google Scholar]
  41. Everett, R. D., Freemont, P., Saitoh, H., Orr, A., Kathoria, M. & Parkinson, J. (1998a). The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110 and proteasome-dependent loss of several PML isoforms. Journal of Virology 72, 6581-6591. [Google Scholar]
  42. Everett, R. D., Orr, A. & Preston, C. M. (1998b). A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO Journal 17, 7161-7169.[CrossRef] [Google Scholar]
  43. Everett, R. D., Earnshaw, W. C., Findlay, J. & Lomonte, P. (1999a). Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO Journal 18, 1526-1538.[CrossRef] [Google Scholar]
  44. Everett, R. D., Earnshaw, W. C., Pluta, A. F., Sternsdorf, T., Ainsztein, A. M., Carmena, M., Ruchaud, S., Hsu, W.-L. & Orr, A. (1999b). A dynamic connection between centromeres and ND10 proteins. Journal of Cell Science 112, 3443-3454. [Google Scholar]
  45. Farrell, M. J., Dobson, A. T. & Feldman, L. T. (1991). Herpes simplex virus latency-associated transcript is a stable intron. Proceedings of the National Academy of Sciences, USA 88, 790-794.[CrossRef] [Google Scholar]
  46. Feldman, L. T. (1994). Transcription of the HSV-1 genome in neurons in vivo. Seminars in Virology 5, 207-212.[CrossRef] [Google Scholar]
  47. Field, H. J. & Wildy, P. W. (1978). The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. Journal of Hygiene 81, 267-277.[CrossRef] [Google Scholar]
  48. Fraser, N. W., Block, T. M. & Spivack, J. G. (1992). The latency-associated transcripts of herpes simplex virus: RNA in search of a function. Virology 191, 1-8.[CrossRef] [Google Scholar]
  49. Garber, D. A., Schaffer, P. A. & Knipe, D. M. (1997). A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. Journal of Virology 71, 5885-5893. [Google Scholar]
  50. Glorioso, J. C., Goins, W. F. & Fink, D. J. (1992). Herpes simplex virus-based vectors. Seminars in Virology 3, 265-276. [Google Scholar]
  51. Glorioso, J. C., DeLuca, N. A. & Fink, D. J. (1995). Development and application of herpes simplex virus vectors for human gene therapy. Annual Review of Microbiology 49, 675-710.[CrossRef] [Google Scholar]
  52. Gordon, J. Y., McKnight, J. L., Ostrove, J. M., Romanowski, E. & Araullo-Cruz, T. (1990). Host species and strain differences affect the ability of an HSV-1 ICP0 deletion mutant to establish latency and spontaneously reactivate in vivo. Virology 178, 469-477.[CrossRef] [Google Scholar]
  53. Gressens, P. & Martin, J. R. (1994). In situ polymerase chain reaction: localization of HSV-2 DNA sequences in infections of the nervous system. Journal of Virological Methods 46, 61-83.[CrossRef] [Google Scholar]
  54. Hagmann, M., Georgiev, O., Schaffner, W. & Douville, P. (1995). Transcription factors interacting with herpes simplex virus α gene promoters in sensory neurons. Nucleic Acids Research 23, 4978-4985.[CrossRef] [Google Scholar]
  55. Halford, W. P., Gebhardt, B. M. & Carr, D. J. J. (1996). Mechanisms of herpes simplex virus type 1 reactivation. Journal of Virology 70, 5051-5060. [Google Scholar]
  56. Harris, R. A. & Preston, C. M. (1991). Establishment of latency in vitro by the herpes simplex virus type 1 mutant in1814. Journal of General Virology 72, 907-913.[CrossRef] [Google Scholar]
  57. He, X., Treacy, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. S. & Rosenberg, M. G. (1989). Expression of a large family of POU-domain relatory genes in mammalian brain development. Nature 340, 35-42.[CrossRef] [Google Scholar]
  58. Herr, W. & Cleary, M. A. (1995). The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes & Development 9, 1679-1693.[CrossRef] [Google Scholar]
  59. Honess, R. W. & Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14, 8-19. [Google Scholar]
  60. James, T. C., Eissenberg, J. C., Craig, C., Deitrich, V., Hobson, A. & Elgin, S. C. R. (1989). Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. European Journal of Cell Biology 50, 170-180. [Google Scholar]
  61. Jamieson, D. R. S., Robinson, L. H., Daksis, J. I., Nicholl, M. J. & Preston, C. M. (1995). Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus Vmw65 mutants. Journal of General Virology 76, 1417-1431.[CrossRef] [Google Scholar]
  62. Johnson, P. A., Miyanohara, A., Levine, F., Cahill, T. & Friedmann, T. (1992). Cytotoxicity of a replication defective mutant of herpes simplex virus type 1. Journal of Virology 66, 2952-2965. [Google Scholar]
  63. Johnson, P. A., Wang, M. J. & Friedmann, T. (1994). Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. Journal of Virology 68, 6347-6362. [Google Scholar]
  64. Jordan, R., Pepe, J. & Schaffer, P. A. (1998). Characterization of a nerve growth factor-inducible cellular activity that enhances herpes simplex virus type 1 gene expression and replication of an ICP0 null mutant in cells of neural lineage. Journal of Virology 72, 5373-5382. [Google Scholar]
  65. Katz, J. P., Bodin, E. T. & Coen, D. M. (1990). Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. Journal of Virology 64, 4288-4295. [Google Scholar]
  66. Kemp, L. M. & Latchman, D. S. (1989). Regulated expression of herpes simplex virus immediate-early genes in neuroblastoma cells. Virology 171, 607-610.[CrossRef] [Google Scholar]
  67. Kemp, L. M., Dent, C. L. & Latchman, D. S. (1990). Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 4, 215-222.[CrossRef] [Google Scholar]
  68. Kosz-Vnenchak, M., Coen, D. M. & Knipe, D. M. (1990). Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses. Journal of Virology 64, 5396-5402. [Google Scholar]
  69. Kosz-Vnenchak, M., Jacobsen, J., Coen, D. M. & Knipe, D. M. (1993). Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. Journal of Virology 67, 5383-5393. [Google Scholar]
  70. Kramer, M. F. & Coen, D. M. (1995). Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse trigeminal ganglia latently infected with herpes simplex virus. Journal of Virology 69, 1389-1399. [Google Scholar]
  71. Kramer, M. F., Chen, S.-H., Knipe, D. M. & Coen, D. M. (1998). Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. Journal of Virology 72, 1177-1185. [Google Scholar]
  72. Kristie, T. M. & Roizman, B. (1988). Differentiation and DNA contact points of the host proteins binding at the cis site for virion-mediated induction of herpes simplex virus 1 α genes. Journal of Virology 62, 1145-1157. [Google Scholar]
  73. Kristie, T. M., Pomerantz, J. L., Twomey, T. C., Parent, S. A. & Sharp, P. A. (1995). The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. Journal of Biological Chemistry 270, 4387-4394.[CrossRef] [Google Scholar]
  74. Kristie, T. M., Vogel, J. L. & Sears, A. E. (1999). Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proceedings of the National Academy of Sciences, USA 96, 1229-1233.[CrossRef] [Google Scholar]
  75. Kwon, B. S., Gangarosa, L. P., Burch, K. D., Deback, J. & Hill, J. M. (1981). Induction of ocular herpes simplex virus shedding induced by iontophoresis of epinephrine into rabbit cornea. Investigative Ophthalmology & Visual Science 21, 442-449. [Google Scholar]
  76. La Boissière, S., Hughes, T. & O’Hare, P. (1999). HCF-dependent nuclear import of VP16. EMBO Journal 18, 480-489.[CrossRef] [Google Scholar]
  77. Lachmann, R. H. & Efstathiou, S. (1997). Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. Journal of Virology 71, 3197-3207. [Google Scholar]
  78. Lachmann, R. H., Browne, H. C. & Efstathiou, S. (1996). A murine RNA polymerase I promoter inserted into the herpes simplex virus type 1 genome is functional during lytic, but not latent, infection. Journal of General Virology 77, 2575-2582.[CrossRef] [Google Scholar]
  79. Lachmann, R. H., Sadarangani, M., Atkinson, H. R. & Efstathiou, S. (1999). An analysis of herpes simplex virus gene expression during latency establishment and reactivation. Journal of General Virology 80, 1271-1282. [Google Scholar]
  80. Lagunoff, M. & Roizman, B. (1994). Expression of a herpes simplex virus 1 open reading frame antisense to the γ134.5 gene and transcribed by an RNA 3′ coterminal with the unspliced latency-associated transcript. Journal of Virology 68, 6021-6028. [Google Scholar]
  81. Lagunoff, M. & Roizman, B. (1995). The regulation of synthesis and properties of the protein product of open reading frame P of the herpes simplex virus 1 genome. Journal of Virology 69, 3615-3623. [Google Scholar]
  82. Lagunoff, M., Randall, G. & Roizman, B. (1996). Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. Journal of Virology 70, 1810-1817. [Google Scholar]
  83. Latchman, D. S. (1999). POU family transcription factors in the nervous system. Journal of Cellular Physiology 179, 126-133.[CrossRef] [Google Scholar]
  84. Lee, L. Y. & Schaffer, P. A. (1998). A virus with a mutation in the ICP4-binding site in the L/ST promoter of herpes simplex virus type 1, but not a virus with a mutation in open reading frame P, exhibits cell-type-specific expression of γ134.5 transcripts and latency-associated transcripts. Journal of Virology 72, 4250-4264. [Google Scholar]
  85. Lehming, N., Le Saux, A., Schuller, J. & Ptashne, M. (1998). Chromatin components as part of a putative transcriptional repressing complex. Proceedings of the National Academy of Sciences, USA 95, 7322-7326.[CrossRef] [Google Scholar]
  86. Leib, D. A., Coen, D. M., Bogard, C. L., Hicks, K. A., Yager, D. R., Knipe, D. M., Tyler, K. L. & Schaffer, P. A. (1989). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63, 759-768. [Google Scholar]
  87. Leist, T. P., Sandri-Goldin, R. M. & Stevens, J. G. (1989). Latent infections in spinal ganglia with thymidine kinase-deficient herpes simplex virus. Journal of Virology 63, 4976-4978. [Google Scholar]
  88. Lekstrom-Himes, J. A., Pesnicak, L. & Straus, S. E. (1998). The quantity of latent viral DNA correlates with the relative rates at which herpes simplex virus types 1 and 2 cause recurrent genital herpes outbreaks. Journal of Virology 72, 2760-2764. [Google Scholar]
  89. Lillycrop, K. A. & Latchman, D. S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. Journal of Biological Chemistry 267, 24960-24965. [Google Scholar]
  90. Lillycrop, K. A., Dent, C. L., Wheatley, S. C., Beech, N. M., Ninkina, N. N., Wood, J. N. & Latchman, D. S. (1991). The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons. Neuron 7, 381-390.[CrossRef] [Google Scholar]
  91. Lillycrop, K. A., Estridge, J. K. & Latchman, D. S. (1993). The octamer binding protein Oct-2 inhibits transactivation of the herpes simplex virus immediate-early genes by the virion protein Vmw65. Virology 196, 888-891.[CrossRef] [Google Scholar]
  92. Lillycrop, K. A., Howard, M. K., Estridge, J. K. & Latchman, D. S. (1994). Inhibition of herpes simplex virus infection by ectopic expression of neuronal splice variants of the Oct-2 transcription factor. Nucleic Acids Research 22, 815-820.[CrossRef] [Google Scholar]
  93. Lokensgard, J. R., Bloom, D. C., Dobson, A. T. & Feldman, L. T. (1994). Long-term promoter activity during herpes simplex virus latency. Journal of Virology 68, 7148-7158. [Google Scholar]
  94. Lokensgard, J. R., Berthomme, H. & Feldman, L. T. (1997). The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency. Journal of Virology 71, 6714-6719. [Google Scholar]
  95. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69, 1531-1574.[CrossRef] [Google Scholar]
  96. McLennan, J. L. & Darby, G. (1980). Herpes simplex virus latency: the cellular location of virus in dorsal root ganglia and the fate of the infected cell following virus activation. Journal of General Virology 51, 233-243.[CrossRef] [Google Scholar]
  97. Mador, N., Goldenberg, D., Cohen, O., Panet, A. & Steiner, I. (1998). Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. Journal of Virology 72, 5067-5075. [Google Scholar]
  98. Maggioncalda, J., Mehta, A., Su, Y. H., Fraser, N. W. & Block, T. M. (1996). Correlation between herpes simplex virus type 1 reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 225, 72-81.[CrossRef] [Google Scholar]
  99. Margolis, T. P., Sedarati, F., Dobson, A. T., Feldman, L. T. & Stevens, J. G. (1992). Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology 189, 150-160.[CrossRef] [Google Scholar]
  100. Maul, G. G. (1998). Nuclear domain 10, the site of DNA virus transcription and replication. BioEssays 20, 660-667.[CrossRef] [Google Scholar]
  101. Maul, G. G. & Everett, R. D. (1994). The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. Journal of General Virology 75, 1223-1233.[CrossRef] [Google Scholar]
  102. Maul, G. G., Guldner, H. H. & Spivack, J. G. (1993). Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product. Journal of General Virology 74, 2679-2690.[CrossRef] [Google Scholar]
  103. Maul, G. G., Ishov, A. & Everett, R. D. (1996). Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217, 67-75.[CrossRef] [Google Scholar]
  104. Mehta, A., Maggioncalda, J., Bagasra, O., Thikkavarapu, S., Saikumari, P., Valyi-Nagy, T., Fraser, N. W. & Block, T. M. (1995).In situ PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206, 633-640.[CrossRef] [Google Scholar]
  105. Mellerick, D. M. & Fraser, N. W. (1987). Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158, 265-275.[CrossRef] [Google Scholar]
  106. Moriya, A., Yoshiki, A., Kita, M., Fushiki, S. & Imanishi, J. (1994). Heat shock-induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Archives of Virology 135, 419-425.[CrossRef] [Google Scholar]
  107. Muller, S. & Dejean, A. (1999). Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. Journal of Virology 73, 5137-5143. [Google Scholar]
  108. Nichol, P. F., Chang, J. Y., Johnson, E. M. & Olivo, P. D. (1996). Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. Journal of Virology 70, 5476-5486. [Google Scholar]
  109. O’Hare, P. (1993). The virion transactivator of herpes simplex virus. Seminars in Virology 4, 145-155.[CrossRef] [Google Scholar]
  110. O’Hare, P. & Hayward, G. S. (1985). Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. Journal of Virology 53, 751-760. [Google Scholar]
  111. Openshaw, H., Asher, L. V. S., Wohlenberg, C., Sekizawa, T. & Notkins, A. L. (1979). Acute and latent infection of sensory ganglia with herpes simplex virus: immune control and virus reactivation. Journal of General Virology 44, 205-215.[CrossRef] [Google Scholar]
  112. Perng, G.-C., Ghiasi, H., Slanina, S., Nesburn, A. B. & Weschler, S. L. (1996). The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1·5 kilobases of the 8·3-kilobase primary transcript. Journal of Virology 70, 976-984. [Google Scholar]
  113. Phelan, A. & Clements, J. B. (1998). Posttranscriptional regulation in herpes simplex virus. Seminars in Virology 8, 309-318.[CrossRef] [Google Scholar]
  114. Post, L. E. & Roizman, B. (1981). A generalized technique for deletion of specific genes in large genomes: α gene 22 of herpes simplex virus is not essential for growth. Cell 25, 227-232.[CrossRef] [Google Scholar]
  115. Preston, C. M. (1979). Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild type virus or the temperature sensitive mutant tsK. Journal of Virology 29, 275-284. [Google Scholar]
  116. Preston, C. M. & Nicholl, M. J. (1997). Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate early protein synthesis. Journal of Virology 71, 7807-7813. [Google Scholar]
  117. Preston, C. M., Mabbs, R. & Nicholl, M. J. (1997). Construction and characterization of herpes simplex virus type 1 mutants with conditional defects in immediate early gene expression. Virology 229, 228-239.[CrossRef] [Google Scholar]
  118. Preston, C. M., Rinaldi, A. & Nicholl, M. J. (1998). Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. Journal of General Virology 79, 117-124. [Google Scholar]
  119. Puga, A., Rosenthal, J. D., Openshaw, H. & Notkins, A. L. (1978). Herpes simplex virus DNA and mRNA sequences in acutely and chronically infected trigeminal ganglia of mice. Virology 89, 102-111.[CrossRef] [Google Scholar]
  120. Ralph, W. M., Cabatingan, M. S. & Schaffer, P. A. (1994). Induction of herpes simplex virus immediate-early gene expression by a cellular activity expressed in Vero and NB41A3 cells after growth arrest-release. Journal of Virology 68, 6871-6882. [Google Scholar]
  121. Ramakrishnan, R., Fink, D. J., Jiang, G., Desai, P., Glorioso, J. G. & Levine, M. (1994a). Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain. Journal of Virology 68, 1864-1873. [Google Scholar]
  122. Ramakrishnan, R., Levine, M. & Fink, D. J. (1994b). PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. Journal of Virology 68, 7083-7091. [Google Scholar]
  123. Ramakrishnan, R., Poliani, P. L., Levine, M., Glorioso, J. C. & Fink, D. J. (1996). Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. Journal of Virology 70, 6519-6523. [Google Scholar]
  124. Randall, G., Lagunoff, M. & Roizman, B. (1997). The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. Proceedings of the National Academy of Sciences, USA 94, 10379-10384.[CrossRef] [Google Scholar]
  125. Rice, S. A., Long, M. C., Lam, V., Schaffer, P. A. & Spencer, C. A. (1995). Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. Journal of Virology 69, 5550-5559. [Google Scholar]
  126. Rock, D. L. & Fraser, N. W. (1983). Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 302, 523-525.[CrossRef] [Google Scholar]
  127. Rock, D. L. & Fraser, N. W. (1985). Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. Journal of Virology 55, 849-852. [Google Scholar]
  128. Rodahl, E. & Haarr, L. (1997). Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure. Journal of Virology 71, 1703-1707. [Google Scholar]
  129. Roizman, B. & Sears, A. E. (1987). An inquiry into the mechanisms of herpes simplex virus latency. Annual Review of Microbiology 41, 543-571.[CrossRef] [Google Scholar]
  130. Ryan, A. K. & Rosenfeld, M. G. (1997). POU domain family values: flexibility, partnerships and developmental codes. Genes & Development 11, 1207-1225.[CrossRef] [Google Scholar]
  131. Sacks, W. R. & Schaffer, P. A. (1987). Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in culture. Journal of Virology 61, 829-839. [Google Scholar]
  132. Samaniego, L. A., Webb, A. L. & DeLuca, N. A. (1995). Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. Journal of Virology 69, 5705-5715. [Google Scholar]
  133. Samaniego, L. A., Wu, N. & DeLuca, N. A. (1997). The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. Journal of Virology 71, 4614-4625. [Google Scholar]
  134. Samaniego, L. A., Neiderhiser, L. & DeLuca, N. A. (1998). Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. Journal of Virology 72, 3307-3320. [Google Scholar]
  135. Sawtell, N. M. (1997). Comprehensive quantification of herpes simplex virus latency at the single-cell level. Journal of Virology 71, 5423-5431. [Google Scholar]
  136. Sawtell, N. M. (1998). The probability of in vivo reactivation of herpes simplex virus type 1 latency increases with the number of latently infected neurons in the ganglia. Journal of Virology 72, 6888-6892. [Google Scholar]
  137. Sawtell, N. M. & Thompson, R. L. (1992a). Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. Journal of Virology 66, 2157-2169. [Google Scholar]
  138. Sawtell, N. M. & Thompson, R. L. (1992b). Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. Journal of Virology 66, 2150-2156. [Google Scholar]
  139. Sawtell, N. M., Poon, D. K., Tansky, C. S. & Thompson, R. L. (1998). The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. Journal of Virology 72, 5343-5350. [Google Scholar]
  140. Sears, A. E., Halliburton, I. W., Meignier, B., Silver, S. & Roizman, B. (1985). Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55, 338-346. [Google Scholar]
  141. Sears, A. E., Hukkanen, V., Labow, M. A., Levine, A. J. & Roizman, B. (1991). Expression of herpes simplex virus 1 α transinducing factor (VP16) does not induce reactivation of latent virus or prevent the establishment of latency in mice. Journal of Virology 65, 2929-2935. [Google Scholar]
  142. Sedarati, F., Margolis, T. P. & Stevens, J. G. (1993). Latent infection can be established with drastically restricted transcription and replication of the HSV-1 genome. Virology 192, 687-691.[CrossRef] [Google Scholar]
  143. Seeler, J. S., Marchio, A., Sitterlin, D., Transby, C. & Dejean, A. (1998). Interaction of sp100 with HP1 proteins: a link between the promyelocytic leukaemia-associated nuclear bodies and the chromatin compartment. Proceedings of the National Academy of Sciences, USA 95, 7316-7321.[CrossRef] [Google Scholar]
  144. Shimeld, C., Hill, T. J., Blyth, W. A. & Easty, D. L. (1990). Reactivation of latent infection and induction of recurrent herpetic eye disease in mice. Journal of General Virology 71, 397-404.[CrossRef] [Google Scholar]
  145. Simmons, A., Slobedman, B., Speck, P., Arthur, J. & Efstathiou, S. (1992). Two patterns of persistence of herpes simplex virus DNA sequences in the nervous systems of latently infected mice. Journal of General Virology 73, 1287-1291.[CrossRef] [Google Scholar]
  146. Slobedman, B., Efstathiou, S. & Simmons, A. (1994). Quantitative analysis of herpes simplex virus DNA in ganglia of mice latently infected with wild-type and thymidine kinase-deficient viral strains. Journal of General Virology 75, 2469-2474.[CrossRef] [Google Scholar]
  147. Smith, R. L., Pizer, L. I., Johnson, E. M. & Wilcox, C. L. (1992). Activation of second messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Virology 188, 311-318.[CrossRef] [Google Scholar]
  148. Smith, R. L., Escudero, J. M. & Wilcox, C. L. (1994). Regulation of the herpes simplex virus latency-associated transcripts during establishment of latency in sensory neurons in vitro. Virology 202, 49-60.[CrossRef] [Google Scholar]
  149. Speck, P. G. & Simmons, A. (1991). Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. Journal of Virology 65, 4001-4005. [Google Scholar]
  150. Speck, P. G. & Simmons, A. (1992). Synchronous appearance of antigen-positive and latently infected neurons in spinal ganglia of mice infected with a virulent strain of herpes simplex virus. Journal of General Virology 73, 1281-1285.[CrossRef] [Google Scholar]
  151. Stanberry, L. R., Kern, E. R., Richards, J. T., Abbott, T. M. & Overall, J. C. (1982). Genital herpes in guinea pigs: pathogenesis or the primary infection and description of recurrent disease. Journal of Infectious Diseases 146, 397-404.[CrossRef] [Google Scholar]
  152. Steiner, I., Spivack, J. G., Deshmane, S. L., Ace, C. I., Preston, C. M. & Fraser, N. W. (1990). A herpes simplex virus type 1 mutant containing a non-transinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. Journal of Virology 64, 1630-1638. [Google Scholar]
  153. Stevens, J. G. (1989). Human herpesviruses: a consideration of the latent state. Microbiological Reviews 53, 318-332. [Google Scholar]
  154. Stevens, J. G. & Cook, M. L. (1971). Latent herpes simplex virus in spinal ganglia of mice. Science 173, 843-845.[CrossRef] [Google Scholar]
  155. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L. & Feldman, L. (1987). RNA complementary to a herpesvirus alpha gene mRNA is predominant in latently infected neurons. Science 235, 1056-1059.[CrossRef] [Google Scholar]
  156. Stow, N. D. & Stow, E. C. (1986). Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. Journal of General Virology 67, 2571-2585.[CrossRef] [Google Scholar]
  157. Stow, E. C. & Stow, N. D. (1989). Complementation of a herpes simplex virus type 1 Vmw110 mutant by human cytomegalovirus. Journal of General Virology 70, 695-704.[CrossRef] [Google Scholar]
  158. Sturm, R. A., Das, G. & Herr, W. (1988). The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes & Development 2, 1582-1599.[CrossRef] [Google Scholar]
  159. Suzuki, N., Peter, W., Ciesiolka, T., Gruss, P. & Scholer, H. R. (1993). Mouse Oct-1 contains a composite homeodomain of human Oct-1 and Oct-2. Nucleic Acids Research 21, 245-252.[CrossRef] [Google Scholar]
  160. Tal-Singer, R., Lasner, T. M., Podrzucki, W., Skokotas, A., Leary, J., Berger, J. J. & Fraser, N. W. (1997). Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. Journal of Virology 71, 5268-5276. [Google Scholar]
  161. Tenser, R. B., Hay, K. A. & Edris, W. A. (1989). Latency-associated transcript but not reactivatable virus is present in sensory ganglion neurons after inoculation of thymidine kinase-negative mutants of herpes simplex virus type 1. Journal of Virology 63, 2861-2865. [Google Scholar]
  162. Thompson, R. L. & Sawtell, N. M. (1997). The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. Journal of Virology 71, 5432-5440. [Google Scholar]
  163. Turner, E. E., Fedtsova, N. & Rosenfeld, M. G. (1996). POU-domain factor expression in the trigeminal ganglion and implications for herpes virus regulation. NeuroReport 7, 2829-2832. [Google Scholar]
  164. Valyi-Nagy, T., Deshmane, S., Dillner, A. & Fraser, N. W. (1991a). Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia. Journal of Virology 65, 4142-4152. [Google Scholar]
  165. Valyi-Nagy, T., Deshmane, S. L., Spivack, J. G., Steiner, I., Ace, C. I., Preston, C. M. & Fraser, N. W. (1991b). Investigation of herpes simplex virus type 1 (HSV-1) gene expression and DNA synthesis during the establishment of latent infection by an HSV-1 mutant, in1814, that does not replicate in mouse trigeminal ganglia. Journal of General Virology 72, 641-649.[CrossRef] [Google Scholar]
  166. Valyi-Nagy, T., Deshmane, S. L., Raengsakulrach, B., Nicosia, M., Gesser, R. M., Wysocka, M., Dillner, A. & Fraser, N. W. (1992). Herpes simples virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice. Journal of Virology 66, 7336-7345. [Google Scholar]
  167. Wagner, E. K & Bloom, D. C. (1997). Experimental investigation of herpes simplex virus latency. Clinical Microbiology Reviews 10, 419-443. [Google Scholar]
  168. Wagner, E. K., Guzowski, J. F. & Singh, J. (1995). Transcription of the herpes simplex virus genome during productive and latent infection. Progress in Nucleic Acid Research and Molecular Biology 51, 123-165. [Google Scholar]
  169. Walz, M. A., Price, R. W. & Notkins, A. L. (1974). Latent ganglionic infection with herpes simplex virus types 1 and 2: viral reactivation in vivo after neurectomy. Science 184, 1185-1187.[CrossRef] [Google Scholar]
  170. Watson, R. J. & Clements, J. B. (1980). A herpes simplex virus type 1 function required for early and late virus RNA synthesis. Nature 285, 329-330.[CrossRef] [Google Scholar]
  171. Wheatley, S. C., Kemp, L. M., Wood, J. N. & Latchman, D. S. (1990). Cell lines derived from dorsal root ganglion neurons are nonpermissive for HSV and express only the latency-associated transcript following infection. Experimental Cell Research 190, 243-246.[CrossRef] [Google Scholar]
  172. Wilcox, C. L. & Johnson, E. M. (1987). Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. Journal of Virology 61, 2311-2315. [Google Scholar]
  173. Wilcox, C. L. & Johnson, E. M. (1988). Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. Journal of Virology 62, 393-399. [Google Scholar]
  174. Wilcox, C. L., Smith, R. L., Freed, C. R. & Johnson, E. M. (1990). Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. Journal of Neuroscience 104, 1268-1275. [Google Scholar]
  175. Wilcox, C. L., Smith, R. L., Everett, R. D. & Mysofski, D. (1997). The herpes simplex virus type 1 immediate-early protein ICP0 is necessary for the efficient establishment of latent infection. Journal of Virology 71, 6777-6785. [Google Scholar]
  176. Wood, J. N., Lillycrop, K. A., Dent, C. L., Ninkina, N. N., Beech, M. M., Willoughby, J. J., Winter, J. & Latchman, D. S. (1992). Regulation of expression of the neuronal POU protein Oct-2 by nerve growth factor. Journal of Biological Chemistry 267, 17787-17791. [Google Scholar]
  177. Wu, N., Watkins, S. C., Schaffer, P. A. & DeLuca, N. A. (1996a). Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. Journal of Virology 70, 6358-6369. [Google Scholar]
  178. Wu, T.-T., Su, Y.-H., Block, T. M. & Taylor, J. M. (1996b). Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. Journal of Virology 70, 5962-5967. [Google Scholar]
  179. Yao, F. & Schaffer, P. A. (1995). An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. Journal of Virology 69, 6249-6258. [Google Scholar]
  180. Yeh, L. & Schaffer, P. A. (1993). A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome. Journal of Virology 67, 7373-7382. [Google Scholar]
  181. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L. & Johnson, D. C. (1994). A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ lymphocytes. Cell 77, 525-535.[CrossRef] [Google Scholar]
  182. Zabolotny, J., Krummenacher, C. & Fraser, N. W. (1997). The herpes simplex virus type 1 2·0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. Journal of Virology 71, 4199-4208. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-1
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-1
Loading

Data & Media loading...

Most cited Most Cited RSS feed