1887

Abstract

Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358–367, and that the other site IV epitope of MAb 7-12 mapped to aa 375–383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-119
2000-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810119a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-119&mimeType=html&fmt=ahah

References

  1. Anzai, J., Takamatsu, F., Takeuchi, K., Kohno, T., Morimoto, K., Goto, H., Minamoto, N. & Kawai, A. ( 1997; ). Identification of a phosphatase-sensitive epitope of rabies virus nucleoprotein which is recognized by a monoclonal antibody 5-2-26. Microbiology and Immunology 41, 229-240.[CrossRef]
    [Google Scholar]
  2. Arnheiter, H., Davis, N. L., Wertz, G., Schubert, M. & Lazzarini, R. A. ( 1985; ). Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis. Cell 41, 259-267.[CrossRef]
    [Google Scholar]
  3. Bourhy, H., Kissi, B. & Tordo, N. ( 1993; ). Molecular diversity of the Lyssavirus genus. Virology 194, 70-81.[CrossRef]
    [Google Scholar]
  4. Buckland, R., Giraudon, P. & Wild, F. ( 1989; ). Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. Journal of General Virology 70, 435-441.[CrossRef]
    [Google Scholar]
  5. Conzelmann, K. K., Cox, J. H., Schneider, L. G. & Thiel, H. J. ( 1990; ). Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175, 485-499.[CrossRef]
    [Google Scholar]
  6. Davies, D. R., Sheriff, S. & Padlan, E. A. ( 1988; ). Antibody–antigen complexes. Journal of Biological Chemistry 263, 10541-10544.
    [Google Scholar]
  7. Deshpande, K. L. & Portner, A. ( 1984; ). Structural and functional analysis of Sendai virus nucleocapsid protein NP with monoclonal antibodies. Virology 139, 32-42.[CrossRef]
    [Google Scholar]
  8. Dietzschold, B., Lafon, M., Wang, H., Otvos, L.Jr, Celis, E., Wunner, W. H. & Koprowski, H. ( 1987; ). Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Research 8, 103-125.[CrossRef]
    [Google Scholar]
  9. Ertl, H. C. J., Dietzschold, B., Gore, M., Otvos, L.Jr, Larson, J. K., Wunner, W. H. & Koprowski, H. ( 1989; ). Induction of rabies virus-specific T-helper cells by synthetic peptides that carry dominant T-helper cell epitopes of the viral ribonucleoprotein. Journal of Virology 63, 2885-2892.
    [Google Scholar]
  10. Fekadu, M., Sumner, J. W., Shaddock, J. H., Sanderlin, D. W. & Baer, G. M. ( 1992; ). Sickness and recovery of dogs challenged with a street rabies virus after vaccination with a vaccinia virus recombinant expressing rabies virus N protein. Journal of Virology 66, 2601-2604.
    [Google Scholar]
  11. Flamand, A., Wiktor, T. J. & Koprowski, H. ( 1980; ). Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins. I. The nucleocapsid protein. Journal of General Virology 48, 97-104.[CrossRef]
    [Google Scholar]
  12. Fu, Z. F., Dietzschold, B., Schumacher, C. L., Wunner, W. H., Ertl, H. C. J. & Koprowski, H. ( 1991; ). Rabies virus nucleoprotein expressed in and purified from insect cells is efficacious as a vaccine. Proceedings of the National Academy of Sciences, USA 88, 2001-2005.[CrossRef]
    [Google Scholar]
  13. Fujii, H., Takita-Sonoda, Y., Mifune, K., Hirai, K., Nishizono, A. & Mannen, K. ( 1994; ). Protective efficacy in mice of post-exposure vaccination with vaccinia virus recombinant expressing either rabies virus glycoprotein or nucleoprotein. Journal of General Virology 75, 1339-1344.[CrossRef]
    [Google Scholar]
  14. Gill, D. S., Takai, S., Portner, A. & Kingsbury, D. W. ( 1988; ). Mapping of antigenic domains of Sendai virus nucleocapsid protein expressed in Escherichia coli. Journal of Virology 62, 4805-4808.
    [Google Scholar]
  15. Gombart, A. F., Hirono, A. & Wong, T. C. ( 1993; ). Conformational maturation of measles virus nucleocapsid protein. Journal of Virology 67, 4133-4141.
    [Google Scholar]
  16. Goto, H., Minamoto, N., Ito, H., Sugiyama, M., Kinjo, T., Mannen, K., Mifune, K. & Kawai, A. ( 1994; ). Nucleotide sequence of the nucleoprotein gene of the RC HL strain of rabies virus, a seed strain used for animal vaccine production in Japan. Virus Genes 8, 91-97.[CrossRef]
    [Google Scholar]
  17. Goto, H., Minamoto, N., Ito, H., Luo, L. R., Sugiyama, M., Kinjo, T. & Kawai, A. ( 1995; ). Expression of the nucleoprotein of rabies virus in Escherichia coli and mapping of antigenic sites. Archives of Virology 140, 1061-1074.[CrossRef]
    [Google Scholar]
  18. Hirano, A., Wang, A. H., Gombart, A. F. & Wong, T. C. ( 1992; ). The matrix proteins of neurovirulent subacute sclerosing panencephalitis virus and its acute measles virus progenitor are functionally different. Proceedings of the National Academy of Sciences, USA 89, 8745-8749.[CrossRef]
    [Google Scholar]
  19. Hummeler, K., Tomassini, N., Sokol, F., Kuwert, E. & Koprowski, H. ( 1968; ). Morphology of the nucleoprotein component of rabies virus. Journal of Virology 2, 1191-1199.
    [Google Scholar]
  20. Hwang, S. B. & Lai, M. M. C. ( 1993; ). A unique conformation at the carboxyl terminus of the small hepatitis delta antigen revealed by a specific monoclonal antibody. Virology 193, 924-931.[CrossRef]
    [Google Scholar]
  21. Ishikawa, Y., Samejima, T., Nunoya, T., Motohashi, T. & Nomura, Y. ( 1989; ). Biological properties of the cell culture-adapted RC-HL strain of rabies virus as a candidate strain for an inactivated vaccine. Journal of the Japan Veterinary Medical Association 42, 637-643.[CrossRef]
    [Google Scholar]
  22. Kissi, B., Tordo, N. & Bourhy, H. ( 1995; ). Genetic polymorphism in the rabies virus nucleoprotein gene. Virology 209, 526-537.[CrossRef]
    [Google Scholar]
  23. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  24. Lafon, M. & Wiktor, T. J. ( 1985; ). Antigenic sites of the ERA rabies virus nucleoprotein and non-structural protein. Journal of General Virology 66, 2125-2133.[CrossRef]
    [Google Scholar]
  25. Lafon, M. & Lafage, M. ( 1987; ). Antiviral activity of monoclonal antibodies specific for the internal proteins N and NS of rabies virus. Journal of General Virology 68, 3113-3123.[CrossRef]
    [Google Scholar]
  26. Lodmell, D. L., Sumner, J. W., Esposito, J. J., Bellini, W. J. & Ewalt, L. C. ( 1991; ). Raccoon poxvirus recombinants expressing the rabies virus nucleoprotein protect mice against lethal rabies virus infection. Journal of Virology 65, 3400-3405.
    [Google Scholar]
  27. Lodmell, D. L., Esposito, J. J. & Ewalt, L. C. ( 1993; ). Rabies virus antinucleoprotein antibody protects against rabies virus challenge in vivo and inhibits rabies virus replication in vitro. Journal of Virology 67, 6080-6086.
    [Google Scholar]
  28. Luo, T. R., Minamoto, N., Ito, H., Goto, H., Hiraga, S., Ito, N., Sugiyama, M. & Kinjo, T. ( 1997; ). A virus-neutralizing epitope on the glycoprotein of rabies virus that contains Trp251 is a linear epitope. Virus Research 51, 35-41.[CrossRef]
    [Google Scholar]
  29. Mannen, K., Hiramatsu, K., Mifune, K. & Sakamoto, S. ( 1991; ). Conserved nucleotide sequence of rabies virus cDNA encoding the nucleoprotein. Virus Genes 5, 69-73.[CrossRef]
    [Google Scholar]
  30. Minamoto, N., Tanaka, H., Hoshida, M., Goto, H., Ito, H., Naruse, S., Yamamoto, K., Sugiyama, M., Kinjo, T., Mannen, K. & Mifune, K. ( 1994; ). Linear and conformation-dependent antigenic sites on the nucleoprotein of rabies virus. Microbiology and Immunology 38, 449-455.[CrossRef]
    [Google Scholar]
  31. Rupprecht, C. E., Dietzschold, B., Wunner, W. H. & Koprowski, H. ( 1991; ). Antigenic relationships of lyssaviruses. In The Natural History of Rabies, pp. 69-100. Edited by G. M. Baer. Boston: CRC Press.
  32. Ryan, K. W., Portner, A. & Murti, K. G. ( 1993; ). Antibodies to paramyxovirus nucleoproteins define regions important for immunogenicity and nucleocapsid assembly. Virology 193, 376-384.[CrossRef]
    [Google Scholar]
  33. Takita-Sonoda, Y., Fujii, H., Mifune, K., Ito, Y., Hiraga, M., Nishizono, A., Mannen, K. & Minamoto, N. ( 1993; ). Resistance of mice vaccinated with rabies virus internal structural proteins to lethal infection. Archives of Virology 132, 51-65.[CrossRef]
    [Google Scholar]
  34. Tordo, N., Poch, O., Ermine, A. & Keith, G. ( 1986; ). Primary structure of leader RNA and nucleoprotein genes of the rabies genome: segmented homology with VSV. Nucleic Acids Research 14, 2671-2683.[CrossRef]
    [Google Scholar]
  35. Westhof, E., Altschuh, D., Moras, D., Bloomer, A. C., Mondragon, A., Klug, A. & Van Regenmortel, M. H. V. ( 1984; ). Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311, 123-126.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-119
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-119
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error