1887

Abstract

Mutagenesis has demonstrated a region in the human T-cell leukaemia virus type I (HTLV-I) 5′ leader RNA which, when deleted, abolishes stable RNA dimer formation . We have further mapped, using both transcribed and synthesized RNA, this site to a 37 base region, which dimerizes with high affinity. When deleted from an HTLV-I Gag–Pol-expressing plasmid which was co-transfected with an envelope protein expressor to produce virions capable of single round infection, the dimer linkage deletion did not affect viral protein production. In addition, virus infectivity was only slightly reduced, to approximately 75–80% of the wild-type.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-1-105
2000-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/1/0810105a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-1-105&mimeType=html&fmt=ahah

References

  1. Bender, W., Chien, Y.-H., Chattopadhyay, S., Vogt, P. K., Gardner, M. B. & Davidson, N. (1978). High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. Journal of Virology 25, 888-896. [Google Scholar]
  2. Berkhout, B. & van Wamel, J. L. B. (1996). Role of the DIS hairpin in replication of human immunodeficiency virus type 1. Journal of Virology 70, 6723-6732. [Google Scholar]
  3. Delamarre, L., Rosenberg, A., Pique, C., Pham, D. & Dokhélar, M.-C. (1997). A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity. Journal of Virology 71, 259-266. [Google Scholar]
  4. Greatorex, J. S., Laisse, V., Dokhelar, M.-C. & Lever, A. M. L. (1996). Sequences involved in the dimerisation of human T-cell leukaemia virus type-1 RNA. Nucleic Acids Research 24, 2919-2923.[CrossRef] [Google Scholar]
  5. Haddrick, M., Lear, A. L., Cann, A. J. & Heaphy, S. (1996). Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. Journal of Molecular Biology 259, 58-68.[CrossRef] [Google Scholar]
  6. Harrison, G. P., Miele, G., Hunter, E. & Lever, A. M. L. (1998). Functional analysis of the core packaging signal in a permissive cell line. Journal of Virology 72, 5886-5896. [Google Scholar]
  7. Katoh, I., Yasunaga, T. & Yoshinaka, Y. (1993). Bovine leukaemia virus RNA sequences involved in dimerization and specific gag protein binding: close relation to the packaging sites of avian, murine, and human retroviruses. Journal of Virology 67, 1830-1839. [Google Scholar]
  8. Laughrea, M. & Jette, L. (1996). Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248–271 are dispensable for dimer formation. Biochemistry 35, 1589-1598.[CrossRef] [Google Scholar]
  9. Laughrea, M., Jette, L., Mak, J., Kleiman, L., Liang, C. & Wainberg, M. A. (1997). Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. Journal of Virology 71, 3397-3406. [Google Scholar]
  10. Marquet, R., Baudin, F., Gabus, C., Darlix, J. L., Mougel, M., Ehresmann, C. & Ehresmann, B. (1991). Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Research 19, 2349-2357.[CrossRef] [Google Scholar]
  11. Mikkelsen, J. G., Lund, A. H., Kristensen, K. D., Duch, M., Sorensen, M. S., Jorgensen, P. & Pedersen, F. S. (1996). A preferred region for recombinational patch repair in the 5′ untranslated region of primer binding site-impaired murine leukemia virus vectors. Journal of Virology 70, 1439-1447. [Google Scholar]
  12. Mikkelsen, J. G., Lund, A. H., Duch, M. & Pedersen, F. S. (1998). Recombination in the 5′ leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias towards the kissing-loop dimerization region. Journal of Virology 72, 6967-6978. [Google Scholar]
  13. Mujeeb, A., Clever, J. L., Billeci, T. M., James, T. L. & Parslow, T. G. (1998). Structure of the dimer initiation complex of HIV-1 genomic RNA. Nature Structural Biology 5, 432-436.[CrossRef] [Google Scholar]
  14. Muriaux, D., Fosse, P. & Paoletti, J. (1996). A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry 35, 5075-5082.[CrossRef] [Google Scholar]
  15. Murti, K. G., Bondurant, M. & Tereba, A. (1981). Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy. Journal of Virology 37, 411-419. [Google Scholar]
  16. Paillart, J. C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. (1996). A loop–loop ‘kissing’ complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proceedings of the National Academy of Sciences, USA 93, 5572-5577.[CrossRef] [Google Scholar]
  17. Torrent, C., Gabus, C. & Darlix, J.-L. (1994). A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus–VL30-derived vectors for gene transfer. Journal of Virology 68, 661-667. [Google Scholar]
  18. Wu, W.-S. & Temin, H. M. (1990). Genetic consequences of packaging two RNA molecules in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proceedings of the National Academy of Sciences, USA 87, 1556-1560.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-1-105
Loading
/content/journal/jgv/10.1099/0022-1317-81-1-105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error