1887

Abstract

In plant pararetroviruses, pregenomic RNA (pgRNA) directs synthesis of circular double-stranded viral DNA and serves as a polycistronic mRNA. By computer-aided analysis, the 14 plant pararetroviruses sequenced so far were compared with respect to structural organization of their pgRNA 5′-leader. The results revealed that the pgRNA of all these viruses carries a long leader sequence containing several short ORFs and having the potential to form a large stem–loop structure; both features are known to be inhibitory for downstream translation. Formation of the structure brings the first long ORF into the close spatial vicinity of a 5′-proximal short ORF that terminates 5 to 10 nt upstream of the stable structural element. The first long ORF on the pgRNA is translated by a ribosome shunt mechanism discovered in cauliflower mosaic (CaMV) and rice tungro bacilliform viruses, representing the two major groups of plant pararetroviruses. Both the short ORF and the structure have been implicated in the shunt process for CaMV pgRNA translation. The conservation of these elements among all plant pararetroviruses suggests conservation of the ribosome shunt mechanism. For some of the less well-studied viruses, the localization of the conserved elements also allowed predictions of the pgRNA promoter region and the translation start site of the first long ORF.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-2217
1999-08-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0802217a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-2217&mimeType=html&fmt=ahah

References

  1. Bacharach E., Goff S. P.. 1998; Binding of the human immunodeficiency virus type 1 Gag protein to the viral RNA encapsidation signal in the yeast three-hybrid signal. Journal of Virology72:6944–6949
    [Google Scholar]
  2. Bao Y., Hull R.. 1993; Mapping the 5′-terminus of rice tungro bacilliform viral genomic RNA. Virology197:445–448
    [Google Scholar]
  3. Bhattacharyya-Pakrasi M., Peng J., Elmer J. S., Laco G., Shen P., Kaniewska M. B., Kononowicz H., Wen F., Hodges T. K., Beachy R. N.. 1993; Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues. Plant Journal4:71–79
    [Google Scholar]
  4. Bonneville J.-M., Sanfaçon H., Fütterer J., Hohn T.. 1989; Posttranscriptional trans-activation in cauliflower mosaic virus. Cell59:1135–1143
    [Google Scholar]
  5. Bouhida M., Lockhart B. E. L., Olszewski N. E.. 1993; An analysis of the complete sequence of a sugarcane bacilliform virus genome infectious to banana and rice. Journal of General Virology74:15–22
    [Google Scholar]
  6. Calvert L. A., Ospina M. D., Shepherd R. J.. 1995; Characterization of cassava vein mosaic virus: a distinct plant pararetrovirus. Journal of General Virology76:1271–1278
    [Google Scholar]
  7. Chen G., Müller M., Potrykus I., Hohn T., Fütterer J.. 1994; Rice tungro bacilliform virus: transcription and translation in protoplasts. Virology204:91–100
    [Google Scholar]
  8. Cheng C.-P., Lockhart B. E. L., Olszewski N. E.. 1996; The ORF I and II proteins of Commelina yellow mottle virus are virion-associated. Virology223:263–271
    [Google Scholar]
  9. de Kochko A., Verdaguer B., Taylor N., Carcamo R., Beachy R. N., Fauquet C.. 1998; Cassava vein mosaic virus (CsVMV), type species for a new genus of plant double stranded DNA viruses?. Archives of Virology143:945–962
    [Google Scholar]
  10. Dominguez D. I., Ryabova L. A., Pooggin M. M., Schmidt-Puchta W., Fütterer J., Hohn T.. 1998; Ribosome shunt in cauliflower mosaic virus: identification of an essential and sufficient structural element. Journal of Biological Chemistry273:3669–3678
    [Google Scholar]
  11. Donzé O., Spahr P.-F.. 1992; Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging. EMBO Journal11:3747–3757
    [Google Scholar]
  12. Donzé O., Damay P., Spahr P.-F.. 1995; The first and third uORFs in RSV leader RNA are efficiently translated: implications for translation regulation and packaging. Nucleic Acids Research23:861–868
    [Google Scholar]
  13. Franck A., Guilley H., Jonard G., Richards K., Hirth L.. 1980; Nucleotide sequence of cauliflower mosaic virus DNA. Cell21:285–294
    [Google Scholar]
  14. Fütterer J., Gordon K., Bonneville J.-M., Sanfaçon H., Pisan B., Penswick J., Hohn T.. 1988; The leading sequence of caulimovirus large RNA can be folded into a large stem–loop structure. Nucleic Acids Research16:8377–8390
    [Google Scholar]
  15. Fütterer J., Hohn T.. 1991; Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO Journal10:3887–3896
    [Google Scholar]
  16. Fütterer J., Hohn T.. 1996; Translation in plants – rules and exceptions. Plant Molecular Biology32:159–189
    [Google Scholar]
  17. Fütterer J., Gordon K., Sanfaçon H., Bonneville J.-M., Hohn T.. 1990; Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO Journal9:1697–1707
    [Google Scholar]
  18. Fütterer J., Kiss-László Z., Hohn T.. 1993; Non-linear ribosome migration on cauliflower mosaic virus 35S RNA. Cell73:789–802
    [Google Scholar]
  19. Fütterer J., Potrykus I., Bao Y., Li L., Burns T. M., Hull R., Hohn T.. 1996; Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. Journal of Virology70:2999–3010
    [Google Scholar]
  20. Fütterer J., Rothnie H. M., Hohn T., Potrykus I.. 1997; Rice tungro bacilliform virus open reading frames II and III are translated from polycistronic pregenomic RNA by leaky scanning. Journal of Virology71:7984–7989
    [Google Scholar]
  21. Grant C. M., Hinnebusch A. G.. 1994; Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 Translational control. Molecular and Cellular Biology14:606–618
    [Google Scholar]
  22. Guilley H., Dudley R. K., Jonard G., Balazs E., Richards K. E.. 1982; Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell30:763–773
    [Google Scholar]
  23. Hackett P. B., Dalton M. W., Johnson D. P., Petersen R. B.. 1991; Phylogenetic and physical analysis of the 5′-leader RNA sequences of avian retroviruses. Nucleic Acids Research19:6929–6934
    [Google Scholar]
  24. Hagen L. S., Jacquemond M., Lepingle A., Lot H., Tepfer M.. 1993; Nucleotide sequence and genomic organization of cacao swollen shoot virus. Virology196:619–628
    [Google Scholar]
  25. Harper G., Hull R.. 1998; Banana streak virus, complete genome. EMBL accession no. AF002234
    [Google Scholar]
  26. Hasegawa A., Verver J., Shimada A., Saito M., Goldbach R., Van Kammen A., Miki K., Kameya-Iwaki M., Hibi T.. 1989; The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Research17:9993–10013
    [Google Scholar]
  27. Hay J. M., Jones M. C., Blakebrough M. L., Dasgupta I., Davies J. W., Hull R.. 1991; An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Research19:2615–2621
    [Google Scholar]
  28. Hemmings-Mieszczak M., Steger G., Hohn T.. 1997; Alternative structures of the cauliflower mosaic virus 35S RNA leader: implications for viral expression and replication. Journal of Molecular Biology267:1075–1088
    [Google Scholar]
  29. Hemmings-Mieszczak M., Steger G., Hohn T.. 1998; Regulation of CaMV 35S RNA translation is mediated by a stable hairpin in the leader. RNA4:101–111
    [Google Scholar]
  30. Hinnebusch A. G.. 1997; Translation regulation of yeast GCN4 : a window on factors that control initiator tRNA binding to the ribosome. Journal of Biological Chemistry272:21661–21664
    [Google Scholar]
  31. Hohn T., Fütterer J.. 1997; The proteins and functions of plant pararetroviruses: knowns and unknowns. Critical Reviews in Plant Sciences16:133–161
    [Google Scholar]
  32. Hull R., Sadler J., Longstaff M.. 1986; The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. EMBO Journal5:3083–3090
    [Google Scholar]
  33. Kozak M.. 1989; The scanning model for translation: an update. Journal of Cell Biology108:229–241
    [Google Scholar]
  34. Kozak M.. 1990; Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proceedings of the National Academy of Sciences, USA87:8301–8305
    [Google Scholar]
  35. Le S., Siddiqui A., Maizel J. V. Jr. 1996; A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes12:135–147
    [Google Scholar]
  36. Maiti I. B., Shepherd R. J.. 1998; Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochemical Biophysical Research Communications244:440–444
    [Google Scholar]
  37. Medberry S. L., Lockhart B. E. L., Olszewski N. E.. 1990; Properties of Commelina yellow mottle virus′s complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Research18:5505–5513
    [Google Scholar]
  38. Medberry S. L., Lockhart B. E. L., Olszewski N. E.. 1992; The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell4:185–192
    [Google Scholar]
  39. Mesnard J. M., Carriere C.. 1995; Comparison of packaging strategy of retroviruses and pararetroviruses. Virology213:1–6
    [Google Scholar]
  40. Mushegian A. R., Wolff J. A., Richins R. D., Shepherd R. J.. 1995; Molecular analysis of the essential and nonessential genetic elements in the genome of peanut chlorotic streak caulimovirus. Virology206:823–834
    [Google Scholar]
  41. Odell J. T., Nagy F., Chua N. H.. 1985; Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Nature313:810–812
    [Google Scholar]
  42. Petrzik K., Beneš V., Mráz I., Honetšlegrová-Fránová J., Ansorge W., Špak J.. 1998; Strawberry vein banding virus – definitive member of the genus Caulimovirus. Virus Genes16:303–305
    [Google Scholar]
  43. Pooggin M. M., Hohn T., Fütterer J.. 1998; Forced evolution reveals the importance of short ORF A and secondary structure in the cauliflower mosaic virus 35S RNA leader. Journal of Virology72:4157–4169
    [Google Scholar]
  44. Richert-Pöggeler K. R., Shepherd R. J.. 1997; Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology236:137–146
    [Google Scholar]
  45. Richins R. D., Scholthof H. B., Shepherd R. J.. 1987; Sequence of figwort mosaic virus DNA (caulimovirus group. Nucleic Acids Research15:8451–8466
    [Google Scholar]
  46. Rothnie H. M.. 1996; Plant mRNA 3′-end formation. Plant Molecular Biology32:43–61
    [Google Scholar]
  47. Rothnie H. M., Chapdelaine Y., Hohn T.. 1994; Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Advances in Virus Research44:1–67
    [Google Scholar]
  48. Sanfaçon H.. 1994; Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal. Virology198:39–49
    [Google Scholar]
  49. Sanger M., Daubert S., Goodman R. M.. 1990; Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Molecular Biology14:433–443
    [Google Scholar]
  50. Scholthof H. B., Gowda S., Wu F. C., Shepherd R. J.. 1992; The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans-activated by the product of gene VI. Journal of Virology66:3131–3139
    [Google Scholar]
  51. Sonstegard T. S., Hackett P. B.. 1996; Autogenous regulation of RNA translation and packaging by Rous sarcoma virus Pr76gag. Journal of Virology70:6642–6652
    [Google Scholar]
  52. Stewart S. R., Semler B. L.. 1998; RNA determinants of picornavirus cap-independent translation initiation. Seminars in Virology8:242–255
    [Google Scholar]
  53. Tzafrir I., Torbert K. A., Lockhart B. E. L., Somers D. A., Olszewski N. E.. 1998; The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots. Plant Molecular Biology38:347–356
    [Google Scholar]
  54. Verdaguer B., de Kochko A., Beachy R. N., Fauquet C.. 1996; Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Molecular Biology31:1129–1139
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-2217
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-2217
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error