1887

Abstract

Gene A40R from vaccinia virus (VV) strain Western Reserve has been characterized. The open reading frame (ORF) was predicted to encode a 159 amino acid, 18152 Da protein with amino acid similarity to C-type animal lectins and to the VV A34R protein, a component of extracellular enveloped virus (EEV). Northern blotting and S1 nuclease mapping showed that gene A40R is transcribed early during infection from a position 12 nucleotides upstream of the ORF, producing a transcript of approximately 600 nucleotides. Rabbit anti-sera were raised against bacterial fusion proteins containing parts of the A40R protein. These were used to identify an 18 kDa primary translation product and - and -glycosylated forms of 28, 35 and 38 kDa. The A40R proteins were detected early during infection, formed higher molecular mass complexes under non-reducing conditions and were present on the cell surface but absent from virions. The proteins partitioned with integral membrane proteins in Triton X-114. Canine pancreatic microsomal membranes protected -translated A40R from proteinase K digestion, suggesting the A40R protein has type II membrane topology. A mutant virus with the A40R gene disrupted after amino acid 50, so as to remove the entire lectin-like domain, and a revertant virus were constructed. Disruption of the A40R gene did not affect virus plaque size, growth rate and titre, EEV formation, or virus virulence in a murine intranasal model.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-2137
1999-08-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0802137a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-2137&mimeType=html&fmt=ahah

References

  1. Aguado B., Selmes I. P., Smith G. L.. 1992; Nucleotide sequence of 21·8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. Journal of General Virology73:2887–2902
    [Google Scholar]
  2. Alcamí A., Smith G. L.. 1992; A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell71:153–167
    [Google Scholar]
  3. Alcamí A., Smith G. L.. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. Journal of Virology69:4633–4639
    [Google Scholar]
  4. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L.. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. Journal of Immunology160:624–633
    [Google Scholar]
  5. Banham A. H., Smith G. L.. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology191:803–812
    [Google Scholar]
  6. Blasco R., Sisler J. R., Moss B.. 1993; Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. Journal of Virology67:3319–3325
    [Google Scholar]
  7. Bordier C.. 1981; Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry256:1604–1607
    [Google Scholar]
  8. Boyle D. B., Coupar B. E. H.. 1988; A dominant selectable marker for the construction of recombinant poxviruses. Gene65:123–128
    [Google Scholar]
  9. Davison A. J., Moss B.. 1989a; Structure of vaccinia virus early promoters. Journal of Molecular Biology210:749–769
    [Google Scholar]
  10. Davison A. J., Moss B.. 1989b; Structure of vaccinia virus late promoters. Journal of Molecular Biology210:771–784
    [Google Scholar]
  11. Drickamer K.. 1993; The biology of animal lectins. Annual Review of Cell Biology9:237–264
    [Google Scholar]
  12. Duncan S. A., Smith G. L.. 1992; Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. Journal of Virology66:1610–1621
    [Google Scholar]
  13. Engelstad M., Howard S. T., Smith G. L.. 1992; A constitutively expressed vaccinia virus gene encodes a 42 kDa glycoprotein related to complement control factors that forms part of the extracellular envelope. Virology188:801–810
    [Google Scholar]
  14. Falkner F. G., Moss B.. 1988; Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. Journal of Virology62:1849–1854
    [Google Scholar]
  15. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E.. 1990; The complete DNA sequence of vaccinia virus. Virology179:247–266
    [Google Scholar]
  16. Gooley A. A., Classon B. J., Marschalek R., Williams K. L.. 1991; Glycosylation sites identified by detection of glycosylated amino-acids released from Edman degradation – the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochemical and Biophysical Research Communications178:1194–1201
    [Google Scholar]
  17. Graves B. J., Crowther R. L., Chandran C., Rumberger J. M., Li S., Huang K.-S., Presky D. H., Familletti P. C., Wolitsky B. A., Burns D. K.. 1994; Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature367:532–538
    [Google Scholar]
  18. Hirt P., Hiller G., Wittek R.. 1986; Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. Journal of Virology58:757–764
    [Google Scholar]
  19. Isaacs S. N., Kotwal G. J., Moss B.. 1990; Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses. Virology178:626–630
    [Google Scholar]
  20. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B.. 1992; Characterization of a vaccinia virus-encoded 42-Kilodalton class I membrane glycoprotein component of the extracellular virus envelope. Journal of Virology66:7217–7224
    [Google Scholar]
  21. Johnson G. P., Goebel S. J., Paoletti E.. 1993; An update on the vaccinia virus genome. Virology196:381–401
    [Google Scholar]
  22. Kerr S. M., Smith G. L.. 1991; Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology180:625–632
    [Google Scholar]
  23. Koerner T. J., Hill J. E., Myers A. M., Tzagoloff A.. 1991; High expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods in Enzymology194:477–490
    [Google Scholar]
  24. Kotwal G. J., Moss B.. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature335:176–178
    [Google Scholar]
  25. Kotwal G. J., Hugin A. W., Moss B.. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology171:579–587
    [Google Scholar]
  26. McIntosh A. A. G., Smith G. L.. 1996; Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. Journal of Virology70:272–281
    [Google Scholar]
  27. Mackett M., Smith G. L., Moss B.. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: A Practical Approach pp191–211 Edited by Glover D. M.. Oxford: IRL Press;
    [Google Scholar]
  28. Mallon V. R., Holowczak J. A.. 1985; Vaccinia virus antigens on the plasma membrane of infected cells. I. Viral antigens transferred from infecting virus particles and synthesized after infection. Virology141:201–220
    [Google Scholar]
  29. Mallon V. R., Domber E. A., Holowczak J. A.. 1985; Vaccinia virus proteins on the plasma membranes of infected cells. II. Expression of viral antigens and killing of infected cells by vaccinia virus-specific cytotoxic T cells. Virology145:1–23
    [Google Scholar]
  30. Massung R. F., Liu L. I., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J.. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology201:215–240
    [Google Scholar]
  31. Moss B.. 1996; Poxviridae : the viruses and their replication. In Fields Virology pp2637–2671 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  32. Parkinson J. E., Smith G. L.. 1994; Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology204:376–390
    [Google Scholar]
  33. Parkinson J. E., Sanderson C. M., Smith G. L.. 1995; The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology214:177–188
    [Google Scholar]
  34. Patel A. H., Gaffney D. F., Subak-Sharpe J. H., Stow N. D.. 1990; DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. Journal of General Virology71:2013–2021
    [Google Scholar]
  35. Rodriguez J. F., Smith G. L.. 1990a; Inducible gene expression from vaccinia virus vectors. Virology177:239–250
    [Google Scholar]
  36. Rodriguez J. F., Smith G. L.. 1990b; IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. Nucleic Acids Research18:5347–5351
    [Google Scholar]
  37. Roper R. L., Payne L. G., Moss B.. 1996; Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. Journal of Virology70:3753–3762
    [Google Scholar]
  38. Rosel J. L., Earl P. L., Weir J. P., Moss B.. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hin dIII H genome fragment. Journal of Virology60:436–449
    [Google Scholar]
  39. Shchelkunov S. N., Massung R. F., Esposito J. J.. 1995; Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Research36:107–118
    [Google Scholar]
  40. Shida H.. 1986; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology150:451–462
    [Google Scholar]
  41. Smith G. L., Chan Y. S., Howard S. T.. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. Journal of General Virology72:1349–1376
    [Google Scholar]
  42. Stroobant P., Rice A. P., Gullick W. J., Cheng D. J., Kerr I. M., Waterfield M. D.. 1985; Purification and characterization of vaccinia virus growth factor. Cell42:383–393
    [Google Scholar]
  43. Symons J. A., Alcamí A., Smith G. L.. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell81:551–560
    [Google Scholar]
  44. Tomley F. M., Binns M. M., Campbell J., Boursnell M. E. G.. 1988; Sequence analysis of an 11·2 kilobase, near-terminal Bam HI fragment of fowlpox virus. Journal of General Virology69:1025–1040
    [Google Scholar]
  45. Turner G. S.. 1967; Respiratory infection of mice with vaccinia virus. Journal of General Virology1:399–402
    [Google Scholar]
  46. Ueda Y., Morikawa S., Matsuura Y.. 1990; Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. Virology177:588–594
    [Google Scholar]
  47. Weis W. I., Kahn R., Fourme R., Drickamer K., Hendrickson W. A.. 1991; Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science254:1608–1615
    [Google Scholar]
  48. Weis W. I., Drickamer K., Hendrickson W. A.. 1992; Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature360:127–134
    [Google Scholar]
  49. Yuen L., Moss B.. 1987; Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of Sciences, USA84:6417–6421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-2137
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-2137
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error