Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations Free

Abstract

The effect of migration among different isolated virus quasispecies populations on their adaptation and diversity was analysed through experimental evolution. An cell system was employed to simulate migration of vesicular stomatitis virus between isolated homogeneous host cell populations. The results clearly demonstrated a positive correlation between the migration rate and the magnitude of the mean fitness reached by the virus quasispecies populations. The results also showed, although less clearly, that fitness differences among quasispecies decreased with the magnitude of migration. These results are in close agreement with predictions of standard population genetics theory. These results can be explained in terms of the spread of beneficial mutations, originating in a single isolated quasispecies, through the entire system formed by the different quasispecies populations contained in different host cell populations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-2051
1999-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0802051a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-2051&mimeType=html&fmt=ahah

References

  1. Antia R., Levin B. R., May R. M. 1994; Within-host population dynamics and the evolution and maintenance of microparasite virulence. American Naturalist 144:457–472
    [Google Scholar]
  2. Ball J. K., Holmes E. C., Whitwell H., Desselberger U. 1994; Genomic variation of human immunodeficiency virus type 1 (HIV-1): molecular analyses of HIV-1 in sequential blood samples and various organs obtained at autopsy. Journal of General Virology 75:867–879
    [Google Scholar]
  3. Bremermann H. J., Pickering J. 1983; A game-theoretical model of parasite virulence. Journal of Theoretical Biology 100:411–426
    [Google Scholar]
  4. Bremermann H. J., Thieme H. R. 1989; A competitive exclusion principle for pathogen virulence. Journal of Mathematical Biology 27:179–190
    [Google Scholar]
  5. Chao L. 1990; Fitness of RNA virus decreased by Muller’s ratchet. Nature 348:454–455
    [Google Scholar]
  6. Clarke D. K., Duarte E. A., Moya A., Elena S. F., Domingo E., Holland J. 1993; Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. Journal of Virology 67:222–228
    [Google Scholar]
  7. Clarke D. K., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J. 1994; The red queen reigns in the kingdom of RNA viruses. Proceedings of the National Academy of Sciences USA 91:4821–4824
    [Google Scholar]
  8. Dave V. P., Hetherington S. V., Portner A., Leggiadro R. J., Hurwitz J. L. 1997; Inter- and intra-patient sequence diversity among parainfluenza virus-type 1 nucleoprotein genes. Virus Genes 14:153–156
    [Google Scholar]
  9. Delwart E. L., Mullins J. I., Gupta P., Learn G. H. Jr, Holodniy M., Katzenstein D., Walker B. D., Singh M. K. 1998; Human immunodeficiency virus type 1 populations in blood and semen. Journal of Virology 72:617–623
    [Google Scholar]
  10. Duarte E., Clarke D., Moya A., Domingo E., Holland J. 1992; Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the National Academy of Sciences, USA 89:6015–6019
    [Google Scholar]
  11. Duarte E. A., Clarke D. K., Moya A., Elena S. F., Domingo E., Holland J. J. 1993; Many-trillionfold amplification of single RNA virus particles fails to overcome the Muller’s ratchet effect. Journal of Virology 67:3620–3623
    [Google Scholar]
  12. Elena S. F., González-Candelas F., Novella I. S., Duarte E. A., Clarke D. K., Domingo E., Holland J. J., Moya A. 1996; Evolution of fitness in experimental populations of vesicular stomatitis virus. Genetics 142:673–679
    [Google Scholar]
  13. Elena S. F., Dávila M., Novella I. S., Holland J. J., Domingo E., Moya A. 1998; Evolutionary dynamics of fitness recovery from the debilitating effects of Muller’s ratchet. Evolution 52:309–314
    [Google Scholar]
  14. Escarmís C., Dávila M., Charpentier N., Bracho A., Moya A., Domingo E. 1996; Genetic lesions associated with Muller’s ratchet in an RNA virus. Journal of Molecular Biology 264:255–267
    [Google Scholar]
  15. Ewald P. W. 1994 Evolution of Infectious Disease Oxford: Oxford University Press;
    [Google Scholar]
  16. Frank S. A. 1992; A kin selection model for the evolution of virulence. Proceedings of the Royal Society of London Series B 250:195–197
    [Google Scholar]
  17. Gibbs A., Calisher C. H., García-Arenal F. 1995 Molecular Basis of Virus Evolution Cambridge: Cambridge University Press;
  18. Grassly N. C., Harvey P. H., Holmes E. C. 1999; Population dynamics of HIV-1 inferred from gene sequences. Genetics 151:427–438
    [Google Scholar]
  19. Guerri J., Moreno P., Muñoz N., Martínez M. E. 1991; Variability among Spanish citrus tristeza virus isolates revealed by double-stranded RNA analysis. Plant Pathology 40:38–44
    [Google Scholar]
  20. Hartl D. L., Clark A. G. 1988 Principles of Population Genetics Sunderland, MA: Sinauer;
  21. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. A. 1991; Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. Journal of Virology 65:2960–2967
    [Google Scholar]
  22. Hughes E. S., Bell J. E., Simmonds P. 1997; Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. Journal of Virology 71:1272–1280
    [Google Scholar]
  23. Itescu S., Simonelli P. F., Winchester R. J., Ginsberg H. S. 1994; Human immunodeficiency virus type 1 strains in the lungs of infected individuals evolve independently from those in peripheral blood and are highly conserved in the C-terminal region of the envelope V3 loop. Proceedings of the National Academy of Sciences, USA 91:11378–11382
    [Google Scholar]
  24. Kimura M., Weiss G. H. 1964; The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576
    [Google Scholar]
  25. Lefrancois L., Lyles D. S. 1982; The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. II. Monoclonal antibodies of nonneutralizing and cross-reactive epitopes of Indiana and New Jersey serotypes. Virology 121:168–174
    [Google Scholar]
  26. Levin S., Pimentel D. 1981; Selection of intermediate rates of increase in parasite–host systems. American Naturalist 117:308–315
    [Google Scholar]
  27. Maggi F., Fornai C., Vatteroni M. L., Giorgi M., Morrica A., Pistello M., Cammarota G., Marchi S., Ciccorossi P., Bionda A., Bendinelli M. 1997; Differences in hepatitis C virus quasispecies composition between liver, peripheral blood mononuclear cells and plasma. Journal of General Virology 78:1521–1525
    [Google Scholar]
  28. Miralles R., Moya A., Elena S. F. 1997; Is group selection a factor modulating the virulence of RNA viruses?. Genetical Research 69:165–172
    [Google Scholar]
  29. Mosquera J., Adler F. R. 1998; Evolution of virulence: a unified framework for coinfection and superinfection. Journal of Theoretical Biology 195:293–313
    [Google Scholar]
  30. Moya A., García-Arenal F. 1995; Population genetics of viruses: an introduction. In Molecular Basis of Virus Evolution pp 213–223 Edited by Gibbs A., Calisher C. H., García-Arenal F. Cambridge: Cambridge University Press;
    [Google Scholar]
  31. Navas S., Martín J., Quiroga J. A., Castillo I., Carreño V. 1998; Genetic diversity and tissue compartmentalization of the hepatitis C virus genome in blood mononuclear cells, liver, and serum from chronic hepatitis C patients. Journal of Virology 72:1640–1646
    [Google Scholar]
  32. Nichol S. T. 1987; Molecular epizootiology and evolution of vesicular stomatitis virus New Jersey. Journal of Virology 61:1029–1036
    [Google Scholar]
  33. Nichol S. T. 1988; Genetic diversity of enzootic isolates of vesicular stomatitis virus New Jersey. Journal of Virology 62:572–579
    [Google Scholar]
  34. Norusis M. J. 1992 SPSS for Windows: advanced statistics, release 5 Chicago: SPSS;
    [Google Scholar]
  35. Novella I. S., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J. J. 1995a; Exponential increases of RNA virus fitness during large population transmissions. Proceedings of the National Academy of Sciences, USA 92:5841–5844
    [Google Scholar]
  36. Novella I. S., Elena S. F., Moya A., Domingo E., Holland J. J. 1995b; Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. Journal of Virology 69:2869–2872
    [Google Scholar]
  37. Novella I. S., Elena S. F., Moya A., Domingo E., Holland J. J. 1996; Repeated transfer of small RNA virus populations leading to balanced fitness with infrequent stochastic drift. Molecular and General Genetics 252:733–738
    [Google Scholar]
  38. Novella I. S., Quer J., Domingo E., Holland J. J. 1999; Exponential fitness gains of RNA virus populations are limited by bottleneck effects. Journal of Virology 73:1668–1671
    [Google Scholar]
  39. Nowak M. A., May R. M. 1994; Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London Series B 255:81–89
    [Google Scholar]
  40. Poss M., Martin H. L., Kreiss J. K., Granville L., Chohan B., Nyange P., Mandaliya K., Overbaugh J. 1995; Diversity in virus populations from genital secretions and peripheral blood from women recently infected with human immunodeficiency virus type 1. Journal of Virology 69:8118–8122
    [Google Scholar]
  41. Poss M., Rodrigo A. G., Gosink J. J., Learn G. H., de Vange Panteleeff D., Martin H. L. Jr, Bwayo J., Kreiss J. K., Overbaugh J. 1998; Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. Journal of Virology 72:8240–8251
    [Google Scholar]
  42. Reinhart T. A., Rogan M. J., Amedee A. M., Murphey-Corb M., Rausch D. M., Eiden L. E., Haase A. T. 1998; Tracking members of the simian immunodeficiency virus deltaB670 quasispecies population in vivo at single-cell resolution. Journal of Virology 72:113–120
    [Google Scholar]
  43. Rodríguez-Cerezo E., Moya A., García-Arenal F. 1989; Variability and evolution of the plant RNA virus pepper mild mottle virus. Journal of Virology 63:2198–2203
    [Google Scholar]
  44. Rodríguez-Cerezo E., Moya A., Elena S. F., García-Arenal F. 1991; High genetic stability in natural populations of the plant RNA virus tobacco mild green mosaic virus. Journal of Molecular Evolution 32:328–332
    [Google Scholar]
  45. Sokal R. R., Rohlf F. J. 1995 Biometry , , 3rd edn. New York: W. H. Freeman;
    [Google Scholar]
  46. Vandepol S. B., Lefrancois L., Holland J. J. 1986; Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology 148:312–325
    [Google Scholar]
  47. van’t Wout A. B., Ran L. J., Kuiken C. L., Kootstra N. A., Pals S. T., Schuitemaker H. 1998; Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy. Journal of Virology 72:488–496
    [Google Scholar]
  48. Viazov S., Riffelmann M., Khoudyakov Y., Fields H., Varenholz C., Roggendorf M. 1997; Genetic heterogeneity of hepatitis G virus isolates from different parts of the world. Journal of General Virology 78:577–581
    [Google Scholar]
  49. Wong J. K., Ignacio C. C., Torriani F., Havlir D., Fitch N. J. S., Richman D. D. 1997; In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. Journal of Virology 71:2059–2071
    [Google Scholar]
  50. Zhu T., Wang N., Carr A., Nam D. S., Moor-Jankowski R., Cooper D. A., Ho D. D. 1996; Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. Journal of Virology 70:3098–3107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-2051
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-2051
Loading

Data & Media loading...

Most cited Most Cited RSS feed