1887

Abstract

Cell-culture-adapted (ca) porcine epidemic diarrhoea virus (PEDV) contains three internal open reading frames (I ORF) within the nucleocapsid protein gene and lacks the downstream counterpart of porcine transmissible gastroenteritis virus ORF7 or feline infectious peritonitis virus ORF6a. To confirm whether such features also exist in wild-type (wt) PEDV, the 3′ 1800 nucleotides of its genome were sequenced and were found to be identical to those of ca virus. The coding potential of I-1 ORF was ascertained by transient expression in Vero cells followed by immunofluorescence using antipeptide sera. The I-1 protein was synthesized as a 12 kDa non-phosphorylated PEDV-specific protein that was not present in detectable amounts in virions. However, a low copy number of I-1 in the virion would suggest it is a structural component. Nevertheless, identical nucleotide sequences and gene expression strategies of attenuated ca virus and its virulent parent, wt PEDV, demonstrate that the 3′ 1800 nucleotides or the genes and gene products encoded therein may not contribute to virus attenuation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-1959
1999-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0801959a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-1959&mimeType=html&fmt=ahah

References

  1. Bernasconi C. 1996 Epizootische Virusdiarrhoea Virus: Untersuchungen zur Virulenz eines an Zellkultur adaptierten Stammes und Vergleich zweier Nachweismethoden Thesis Veterinär-medizinische Fakultät, University of Zurich; Zurich, Switzerland:
  2. Bernasconi C., Guscetti F., Utiger A., Van Reeth K., Ackermann M., Pospischil A. 1995; Experimental infections of gnotobiotic piglets with a cell culture adapted porcine epidemic diarrhoea virus: clinical, histopathological and immunohistochemical findings. In Immunobiology of Viral Infections pp 542–546 Edited by Schwyzer M., Ackermann M. Lyon, France: Fondation Marcel Mérieux;
    [Google Scholar]
  3. Bridgen A., Duarte M., Tobler K., Laude H., Ackermann M. 1993; Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. Journal of General Virology 74:1795–1804
    [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  5. Duarte M., Laude H. 1994; Sequence of the spike protein of the porcine epidemic diarrhoea virus. Journal of General Virology 75:1195–1200
    [Google Scholar]
  6. Duarte M., Tobler K., Bridgen A., Rasschaert D., Ackermann M., Laude H. 1994; Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology 198:466–476
    [Google Scholar]
  7. Fischer F., Peng D., Hingley S., Weiss S., Masters P. 1997; The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. Journal of Virology 71:996–1003
    [Google Scholar]
  8. Hofmann M., Wyler R. 1988; Propagation of the virus of porcine epidemic diarrhea in cell culture. Journal of Clinical Microbiology 26:2235–2239
    [Google Scholar]
  9. Hofmann M. A., Senanayake S. D., Brian D. A. 1993; A translation-attenuating intraleader open reading frame is selected on coronavirus mRNAs during persistent infection. Proceedings of the National Academy of Sciences, USA 90:11733–11737
    [Google Scholar]
  10. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  11. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  12. Kozak M. 1990; Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proceedings of the National Academy of Sciences, USA 87:8301–8305
    [Google Scholar]
  13. Rusconi S., Severne Y., Georgiev O., Galli I., Wieland S. 1990; A novel expression assay to study transcriptional activators. Gene 89:211–221
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  15. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  16. Senanayake S., Brian D. 1997; Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Research 48:101–105
    [Google Scholar]
  17. Senanayake S. D., Hofmann M. A., Maki J. L., Brian D. A. 1992; The nucleocapsid protein gene of bovine coronavirus is bicistronic. Journal of Virology 66:5277–5283
    [Google Scholar]
  18. Singh M., Fraefel C., Bello L. J., Lawrence W. C., Schwyzer M. 1996; Identification and characterization of BICP27, an early protein of bovine herpesvirus 1 which may stimulate mRNA 3′ processing. Journal of General Virology 77:615–625
    [Google Scholar]
  19. Tobler K., Ackermann M. 1995; PEDV leader sequence and junction sites. Advances in Experimental Medicine and Biology 380:541–542
    [Google Scholar]
  20. Utiger A., Tobler K., Bridgen A., Ackermann M. 1995; Identification of the membrane protein of porcine epidemic diarrhoea virus. Virus Genes 10:137–148
    [Google Scholar]
  21. Vennema H., Heijnen L., Rottier P. J., Horzinek M. C., Spaan W. J. 1992a; A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. Journal of Virology 66:4951–4956
    [Google Scholar]
  22. Vennema H., Rossen J. W., Wesseling J., Horzinek M. C., Rottier P. J. 1992b; Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology 191:134–140
    [Google Scholar]
  23. Yueh A., Schneider R. J. 1996; Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes & Development 10:1557–1567
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-1959
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-1959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error