1887

Abstract

The majority of the genomic sequence of a porcine enterovirus serotype 1 (PEV-1) isolate was determined. The genome was found to contain a large open reading frame which encoded a leader protein prior to the capsid protein region. This showed no sequence identity to other picornavirus leader regions and the sequence data suggested that it does not possess proteolytic activity. The 2A protease was small and showed considerable sequence identity to the aphthoviruses and to equine rhinovirus serotype 2. The 2A/2B junction possessed the typical cleavage site (NPG/P) exhibited by these viruses. The other proteins shared less than 40% sequence identity with equivalent proteins from other picornavirus genera. Phylogenetic analyses of the P1 and 3D sequences indicated that this virus forms a distinct branch of the family . On the basis of results presented in this paper PEV-1 has been assigned to a new picornavirus genus. The phylogeny of the virus in relation to other picornaviruses is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-1929
1999-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0801929a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-1929&mimeType=html&fmt=ahah

References

  1. Alexander T. J. L., Betts A. O. 1967; Further studies on porcine enteroviruses isolated at Cambridge. I. Infections in SPF pigs and the preparation of monospecific antisera. Research in Veterinary Science 8:321–329
    [Google Scholar]
  2. Auerbach J., Prager D., Neuhaus S., Loss U., Witte K. H. 1994; Grouping of porcine enteroviruses by indirect immunofluorescence and description of two new serotypes. Journal of Veterinary Medicine Series B 41:277–282
    [Google Scholar]
  3. Auvinen P., Hyypiä T. 1990; Echoviruses include genetically distinct serotypes. Journal of General Virology 71:2133–2139
    [Google Scholar]
  4. Bachrach H. L., Swaney J. V., van de Woude G. F. 1973; Isolation of the structural polypeptides of foot-and-mouth disease virus and analysis of their C-terminal sequences. Virology 52:520–528
    [Google Scholar]
  5. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  6. Chow M., Newman J. F. E., Filman D., Hogle J. M., Rowlands D. J., Brown F. 1987; Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486
    [Google Scholar]
  7. Cohen J. I., Ticehurst J. R., Purcell R. H., Buckler-Whilte A., Baroudy B. M. 1987; Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. Journal of Virology 61:50–59
    [Google Scholar]
  8. Cui T., Porter A. G. 1995; Localization of binding site for the encephalomyocarditis virus RNA polymerase in the 3′-noncoding region of the viral RNA. Nucleic Acids Research 23:377–382
    [Google Scholar]
  9. Donnelly M. L. L., Gani D., Flint M., Monaghan S., Ryan M. D. 1997; The cleavage activities of aphthovirus and cardiovirus 2A proteins. Journal of General Virology 78:13–21
    [Google Scholar]
  10. Duke G. M., Hoffman M. A., Palmenberg A. C. 1992; Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. Journal of Virology 66:1602–1609
    [Google Scholar]
  11. Earle J. A. P., Skuce R. A., Fleming C. S., Hoey E. M., Martin S. J. 1988; The complete nucleotide sequence of a bovine enterovirus. Journal of General Virology 69:253–263
    [Google Scholar]
  12. Felsenstein J. 1989; PHYLIP – Phylogeny Inference Package, version 3.2. Cladistics 5:164–166
    [Google Scholar]
  13. Forss S., Strebel K., Beck E., Schaller H. 1984; Nucleotide sequence and genomic organization of foot-and-mouth disease virus. Nucleic Acids Research 12:6587–6601
    [Google Scholar]
  14. Gorbalenya A. E., Koonin E. V., Lai M. M. C. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. FEBS Letters 288:201–255
    [Google Scholar]
  15. Harding J. O. J., Done J. T., Kershaw G. F. 1957; A transmissible polio-encephalomyelitis of pigs (Talfan disease. Veterinary Record 69:824–832
    [Google Scholar]
  16. Honda E., Hattori I., Dohara Y., Taniguchi T., Ariyama K., Kimata A., Nagamine N., Kumagai T. 1990; Sero- and CPE- types of porcine enteroviruses isolated from healthy and diarrheal pigs: possible association of CPE type II with diarrhea. Japanese Journal of Veterinary Science 52:85–90
    [Google Scholar]
  17. Hyypiä T., Horsnell C., Maaronen M., Khan M., Kalkkinen N., Auvinen P., Kinnunen L., Stanway G. 1992; A distinct picornavirus group identified by sequence analysis. Proceedings of the National Academy of Sciences USA 89:8847–8851
    [Google Scholar]
  18. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. Journal of General Virology 78:1–11
    [Google Scholar]
  19. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of coxsackievirus B1. Virology 156:64–73
    [Google Scholar]
  20. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. Journal of General Virology 70:919–934
    [Google Scholar]
  21. Jaeger J. A., Turner D. H., Zuker M. 1989; Improved predictions for secondary structures for RNA. Proceedings of the National Academy of Sciences USA 86:7706–7710
    [Google Scholar]
  22. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282
    [Google Scholar]
  23. Kaku Y., Yamada S., Hihara H. 1998 The genetic analysis of porcine enterovirus-1. Abstracts of the Xth Meeting of the European Study Group on the Molecular Biology of Picornaviruses (EUROPIC’98) , Poster V71
    [Google Scholar]
  24. Knowles N. J., Buckley L. S., Pereira H. G. 1979; Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: description of three new serotypes. Archives of Virology 62:201–208
    [Google Scholar]
  25. Kozak M. 1987; An analysis of 5′ non-coding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15:8125–8148
    [Google Scholar]
  26. Kurz C., Forss S., Kupper H., Strohmaier K., Schaller H. 1981; Nucleotide sequence and corresponding amino acid sequence of the gene for the major antigen of foot and mouth disease. Nucleic Acids Research 9:1919–1931
    [Google Scholar]
  27. Li F., Browning G. F., Studdert M. J., Crabb B. S. 1996; Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proceedings of the National Academy of Sciences USA 93:990–995
    [Google Scholar]
  28. McIlhatton M., Hoey E. M., Martin S. J. 1993 The nucleotide sequence of bovine enterovirus strain M4. Abstracts of the IXth International Congress of Virology Glasgow, Scotland: 18019–20
    [Google Scholar]
  29. McNally R. M. P., Earle J. A. P., McIlhatton M., Hoey E. M., Martin S. J. 1994; The nucleotide sequence of the 5′ non-coding and capsid coding genome regions of two bovine enterovirus strains. Archives of Virology 139:287–299
    [Google Scholar]
  30. Martin S. J., Johnston M. D., Clements J. B. 1970; Purification and characterization of bovine enteroviruses. Journal of General Virology 7:103–113
    [Google Scholar]
  31. Meerovitch K., Sonenberg N. 1993; Internal initiation of picornavirus RNA translation. Seminars in Virology 4:217–227
    [Google Scholar]
  32. Neff S., Sa-Carvalho D., Rieder E., Mason P. W., Blystone S. D., Brown E. J., Baxt B. 1998; Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. Journal of Virology 72:3587–3594
    [Google Scholar]
  33. Nomoto A., Omata T., Toyoda H., Kuge S., Horie H., Kataoka Y., Genba Y., Nakano Y., Imura N. 1982; Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proceedings of the National Academy of Sciences, USA 79:5793–5797
    [Google Scholar]
  34. Pevear D. C., Borkowski J., Calenoff M., Oh C. K., Ostrowski B., Lipton H. L. 1988; Insights into Theiler’s virus neurovirulence based on a genomic comparison of the neurovirulent GDVII and less virulent BeAn strains. Virology 165:1–12
    [Google Scholar]
  35. Piccone M. E., Zellner M., Kumosinki T. F., Mason P. W., Grubman M. 1995; Identification of the active site of foot-and-mouth disease virus leader proteinase. Journal of Virology 69:4950–4956
    [Google Scholar]
  36. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. Journal of General Virology 77:1699–1717
    [Google Scholar]
  37. Queen C., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  38. Roberts P. J., Belsham G. J. 1995; Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. Virology 213:140–146
    [Google Scholar]
  39. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  40. Ryan M. D., Jenkins O., Hughes P. J., Brown A., Knowles N. J., Booth D., Minor P. D., Almond J. W. 1990; The complete nucleotide sequence of enterovirus type 70: relationships with other members of the Picornaviridae. Journal of General Virology 71:2291–2299
    [Google Scholar]
  41. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. 1984; The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Research 12:7859–7875
    [Google Scholar]
  42. Strimmer K., von Haesler A. 1996; Quartet puzzling: a quartet maximum likelihood method for constructing tree topologies. Molecular Biology and Evolution 13:964–969
    [Google Scholar]
  43. Strimmer K., von Haesler A. 1997; Likelihood mapping: a simple method to visualise phylogenetic content of a sequence alignment. Proceedings of the National Academy of Sciences, USA 94:6815–6819
    [Google Scholar]
  44. Templeton A. R. 1983; Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37:221–224
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  46. Todd D., Martin S. J. 1979; Studies of the replication of a bovine enterovirus RNA. Journal of General Virology 43:75–89
    [Google Scholar]
  47. Trefny L. 1930; Massive illness of swine in Teschen area. Zvoroleki Obzori 23:235–236
    [Google Scholar]
  48. Wutz G., Auer H., Nowotny N., Grosse B., Skern T., Kuechler E. 1996; Equine rhinoviruses serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. Journal of General Virology 77:1719–1730
    [Google Scholar]
  49. Yamashita T., Sakae K., Tsuzuki H., Suzuki Y., Ishikawa N., Takeda N., Miyamura T., Yamazaki S. 1998; Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. Journal of Virology 72:8408–8412
    [Google Scholar]
  50. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-1929
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-1929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error