Virus-encoded proteinases of the Free

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-8-1879
1999-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/8/0801879a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-8-1879&mimeType=html&fmt=ahah

References

  1. Barrett A. J., Rawlings N. D., Woessner J. F. (editors) 1998 Handbook of Proteolytic Enzymes London: Academic Press;
  2. Boege U., Wengler G., Wittmann-Liebold B. 1980; Partial amino acid sequences of Sindbis and Semliki Forest virus-specific core proteins. Virology 103:178–190
    [Google Scholar]
  3. Boege U., Wengler G., Wengler G., Wittmann-Liebold B. 1981; Primary structure of the core proteins of the alphaviruses Semliki Forest virus and Sindbis virus. Virology 113:293–303
    [Google Scholar]
  4. Bonilla P. J., Hughes S. A., Weiss S. R. 1997; Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. Journal of Virology 71:900–909
    [Google Scholar]
  5. Carrington J. C., Freed D. D., Sanders T. C. 1989; Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63:4459–4463
    [Google Scholar]
  6. Chen J. P., Strauss J. H., Strauss E. G., Frey T. K. 1996; Characterization of the rubella virus nonstructural protease domain and its cleavage site. Journal of Virology 70:4707–4713
    [Google Scholar]
  7. Choi G. H., Pawlyk D. M., Nuss D. L. 1991; The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747–752
    [Google Scholar]
  8. Choi H.-K., Lu G., Lee S., Wengler G., Rossmann M. G. 1997; Structure of Semliki Forest virus core protein. Proteins: Structure, Function and Genetics 27:345–359
    [Google Scholar]
  9. Clarke I. N., Lambden P. R. 1997; The molecular biology of caliciviruses. Journal of General Virology 78:291–301
    [Google Scholar]
  10. de Groot R. J., Hardy W. R., Shirako Y., Strauss J. H. 1990; Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. EMBO Journal 9:2631–2638
    [Google Scholar]
  11. I., Sawicki S. G., Sawicki D. L. 1996; Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. Journal of Virology 70:2706–2719
    [Google Scholar]
  12. Ding M. X., Schlesinger M. J. 1989; Evidence that Sindbis virus NSP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 171:280–284
    [Google Scholar]
  13. Dominguez G., Wang C.-Y., Frey T. K. 1990; Sequence of the genome RNA of rubella virus; evidence for genetic rearrangement during togavirus evolution. Virology 177:225–238
    [Google Scholar]
  14. Dougherty W. G., Semler B. L. 1993; Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57:781–822
    [Google Scholar]
  15. Falgout B., Pethel M., Zhang Y. M., Lai C. J. 1991; Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology 65:2467–2475
    [Google Scholar]
  16. Faragher S. G., Meek A. D., Rice C. M., Dalgarno L. 1988; Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus. Virology 163:509–526
    [Google Scholar]
  17. Feng Y.-X., Copeland T. D., Oroszlan S., Rein A., Levin J. G. 1990; Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag–pol junction of Moloney murine leukemia virus. Proceedings of the National Academy of Sciences, USA 87:8860–8863
    [Google Scholar]
  18. Forng R. Y., Frey T. K. 1995; Identification of the rubella virus nonstructural proteins. Virology 206:843–853
    [Google Scholar]
  19. Frey T. K. 1994; Molecular biology of rubella virus. Advances in Virus Research 44:69–160
    [Google Scholar]
  20. Garoff H., Frischauf A. M., Simons K., Lehrach H., Delius H. 1980a; The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region. Proceedings of the National Academy of Sciences, USA 77:6376–6380
    [Google Scholar]
  21. Garoff H., Frischauf A. M., Simons K., Lehrach H., Delius H. 1980b; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288:236–241
    [Google Scholar]
  22. Goldbach R., Wellink J. 1988; Evolution of plus-strand RNA viruses. Intervirology 29:260–267
    [Google Scholar]
  23. Gorbalenya A. E., Snijder E. J. 1996; Viral cysteine proteinases. Perspectives in Drug Discovery and Design 6:64–86
    [Google Scholar]
  24. Gorbalenya A. E., Koonin E. V., Lai M. M. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Letters 288:201–205
    [Google Scholar]
  25. Hahn C. S., Strauss J. H. 1990; Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease. Journal of Virology 64:3069–3073
    [Google Scholar]
  26. Hahn C. S., Lustig S., Strauss E. G., Strauss J. H. 1988; Western equine encephalitis virus is a recombinant virus. Proceedings of the National Academy of Sciences USA 85:5997–6001
    [Google Scholar]
  27. Hahn Y. S., Strauss E. G., Strauss J. H. 1989; Mapping of RNA-temperature sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. Journal of Virology 63:3142–3150
    [Google Scholar]
  28. Hardy W. R., Strauss J. H. 1989; Processing the nonstructural polyproteins of Sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. Journal of Virology 63:4653–4664
    [Google Scholar]
  29. Hardy W. R., Hahn Y. S., de Groot R. J., Strauss E. G., Strauss J. H. 1990; Synthesis and processing of the nonstructural polyproteins of several temperature-sensitive mutants of Sindbis virus. Virology 177:199–208
    [Google Scholar]
  30. Hughes S. A., Bonilla P. J., Weiss S. R. 1995; Identification of the murine coronavirus p28 cleavage site. Journal of Virology 69:809–813
    [Google Scholar]
  31. Kalkkinen N., Laaksonen M., Soderlund H., Jornvall H. 1981; Radio-sequence analysis of in vivo multilabeled nonstructural protein ns86 of Semliki Forest virus. Virology 113:188–195
    [Google Scholar]
  32. Kim J. L., Morgenstern K. A., Lin C., Fox T., Dwyer M. D., Landro J. A., Chambers S. P., Markland W., Lepre C. A., O’Malley E. T., Harbeson S. L., Rice C. M., Murcko M. A., Caron P. R., Thomson J. A. 1996; Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355
    [Google Scholar]
  33. Kinney R. M., Johnson B. J., Welch J. B., Tsuchiya K. R., Trent D. W. 1989; The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology 170:19–30
    [Google Scholar]
  34. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28:375–430
    [Google Scholar]
  35. Lemm J. A., Rice C. M. 1993a; Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of P123 and P34. Journal of Virology 67:1905–1915
    [Google Scholar]
  36. Lemm J. A., Rice C. M. 1993b; Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. Journal of Virology 67:1916–1926
    [Google Scholar]
  37. Lemm J. A., Rumenapf T., Strauss E. G., Strauss J. H., Rice C. M. 1994; Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO Journal 13:2925–2934
    [Google Scholar]
  38. Lemm J. A., Bergqvist A., Read C. M., Rice C. M. 1998; Template-dependent initiation of Sindbis virus RNA replication in vitro. Journal of Virology 72:6546–6553
    [Google Scholar]
  39. Levinson R. S., Strauss J. H., Strauss E. G. 1990; Complete sequence of the genomic RNA of o’nyong-nyong virus and its use in the construction of alphavirus phylogenetic trees. Virology 175:110–123
    [Google Scholar]
  40. Li G., Rice C. M. 1993; The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. Journal of Virology 67:5062–5067
    [Google Scholar]
  41. Liu X., Ropp S. L., Jackson R. J., Frey T. K. 1998; The rubella virus nonstructural protease requires divalent cations for activity and functions in trans. Journal of Virology 72:4463–4466
    [Google Scholar]
  42. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Hostomska Z. 1996; The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331–42
    [Google Scholar]
  43. Marr L. D., Wang C. Y., Frey T. K. 1994; Expression of the rubella virus nonstructural protein ORF and demonstration of proteolytic processing. Virology 198:586–592
    [Google Scholar]
  44. Melancon P., Garoff H. 1987; Processing of the Semliki Forest virus structural polyprotein: role of the capsid protease. Journal of Virology 61:1301–1309
    [Google Scholar]
  45. Peters S. A., Voorhorst W. G., Wery J., Wellink J., van Kammen A. 1992; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191:81–89
    [Google Scholar]
  46. Pugachev K. V., Abernathy E. S., Frey T. K. 1997; Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. Journal of Virology 71:562–568
    [Google Scholar]
  47. Rumenapf T., Strauss E. G., Strauss J. H. 1995; Aura virus is a New World representative of Sindbis-like viruses. Virology 208:621–633
    [Google Scholar]
  48. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  49. Ryan M. D., Monaghan S., Flint M. 1998; Virus-encoded proteinases of the Flaviviridae. Journal of General Virology 79:947–959
    [Google Scholar]
  50. Sawicki D. L., Sawicki S. G. 1993; A second nonstructural protein functions in the regulation of alphavirus negative-strand RNA synthesis. Journal of Virology 67:3605–3610
    [Google Scholar]
  51. Sawicki D. L., Sawicki S. G. 1994; Alphavirus positive and negative strand RNA synthesis and the role of polyproteins in formation of viral replication complexes. Archives of Virology Suppl 9:393–405
    [Google Scholar]
  52. Shapira R., Nuss D. L. 1991; Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. Journal of Biological Chemistry 266:19419–19425
    [Google Scholar]
  53. Shirako Y., Strauss J. H. 1990; Cleavage between nsP1 and nsP2 initiates the processing pathway of Sindbis virus nonstructural polyprotein P123. Virology 177:54–64
    [Google Scholar]
  54. Shirako Y., Niklasson B., Dalrymple J. M., Strauss E. G., Strauss J. H. 1991; Structure of the Ockelbo virus genome and its relationship to other Sindbis viruses. Virology 182:753–764
    [Google Scholar]
  55. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  56. Snijder E. J., Wassenaar A. L., Spaan W. J. 1994; Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology 68:5755–5764
    [Google Scholar]
  57. Sommergruber W., Casari G., Fessl F., Seipelt J., Skern T. 1994; The 2A proteinase of human rhinovirus is a zinc containing enzyme. Virology 204:815–818
    [Google Scholar]
  58. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiological Reviews 58:491–562
    [Google Scholar]
  59. Strauss E. G., Rice C. M., Strauss J. H. 1983; Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon. Proceedings of the National Academy of Sciences USA 80:5271–5275
    [Google Scholar]
  60. Strauss E. G., Rice C. M., Strauss J. H. 1984; Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 133:92–110
    [Google Scholar]
  61. Strauss E. G., De Groot R. J., Levinson R., Strauss J. H. 1992; Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology 191:932–940
    [Google Scholar]
  62. Suopanki J., Sawicki D. L., Sawicki S. G., Kääriäinen L. 1998; Regulation of alphavirus 26S mRNA transcription by replicase component nsP2. Journal of General Virology 79:309–319
    [Google Scholar]
  63. Takkinen K. 1986; Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Research 14:5667–5682
    [Google Scholar]
  64. Takkinen K., Peranen J., Keranen S., Soderlund H., Kaariainen L. 1990; The Semliki-Forest-virus-specific nonstructural protein nsP4 is an autoproteinase. European Journal of Biochemistry 189:33–38
    [Google Scholar]
  65. Takkinen K., Peranen J., Kaariainen L. 1991; Proteolytic processing of Semliki Forest virus-specific non-structural polyprotein. Journal of General Virology 72:1627–1633
    [Google Scholar]
  66. Tong L., Wengler G., Rossmann M. G. 1993; Refined structure of Sindbis virus core protein and comparison with other chymotrypsin-like serine proteinase structures. Journal of Molecular Biology 230:228–247
    [Google Scholar]
  67. Volchkov V. E., Volchkova V. A., Netesov S. V. 1991; [Complete nucleotide sequence of the Eastern equine encephalomyelitis virus genome]. Molekuliarnaia Genetika, Mikrobiologia i Virusologa 5:8–15
    [Google Scholar]
  68. Vos P., Verver J., Jaegle M., Wellink J., van Kammen A., Goldbach R. 1988; Two viral proteins involved in the proteolytic processing of the cowpea mosaic virus polyproteins. Nucleic Acids Research 16:1967–1985
    [Google Scholar]
  69. Voss T., Meyer R., Sommergruber W. 1995; Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity. Protein Science 4:2526–2531
    [Google Scholar]
  70. Wang Y.-F., Sawiki S. G., Sawiki D. L. 1994; Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. Journal of Virology 68:6466–6475
    [Google Scholar]
  71. Yan Y., Li Y., Munshi S., Sardana V., Cole J. L., Sardana M., Steinkuehler C., Tomei L., De Francesco R., Kuo L. C., Chen Z. 1998; Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2·2 Å resolution structure in a hexagonal crystal form. Protein Science 7:837–847
    [Google Scholar]
  72. Yao J., Yang D., Chong P., Hwang D., Liang Y., Gillam S. 1998; Proteolytic processing of rubella virus nonstructural proteins. Virology 246:74–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-8-1879
Loading
/content/journal/jgv/10.1099/0022-1317-80-8-1879
Loading

Data & Media loading...

Most cited Most Cited RSS feed