1887

Abstract

Hepatitis B virus (HBV) DNA polymerase (P) is translated from a bicistronic pregenomic RNA via a ribosomal leaky scanning mechanism. Another viral transcript, the preC RNA, differs from pregenomic RNA by the presence of some 30 nt at the 5′ end that encompass the preC initiation codon. This RNA is used exclusively for expression of the precore protein which is a precursor of secreted HBeAg. Factors leading to inefficient translation of the P and C proteins from the preC RNA were explored using a genetic approach in transient transfection assays. Our data indicate that when translating the precore protein, the elongation arrest that occurs during targeting of nascent polypeptide chains to the endoplasmic reticulum interferes with the scanning of the 40S ribosomal subunits. Such interference seems to hinder initiation of the ribosomes at the downstream genes. Furthermore, the presence of the preC initiator codon in the preC mRNA has resulted in a reduction in the number of scanning ribosomes reaching the C and P initiator codons compared with the case of pregenomic RNA. Finally, although the preC initiator codon is in a suboptimal context for translation initiation, an RNA secondary structure, the encapsidation signal, located downstream to the initiator codon is shown to enhance codon recognition, resulting in a depletion of the number of 40S ribosomal subunits available for scanning of the downstream AUG codons. This study demonstrates that the HBV encapsidation signal plays an additional role in facilitating recognition of the preC initiator codon.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-7-1769
1999-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/7/0801769a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-7-1769&mimeType=html&fmt=ahah

References

  1. Bartenschlager R., Schaller H. 1992; Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO Journal 11:3413–3420
    [Google Scholar]
  2. Bartenschlager R., Junker-Niepmann M., Schaller H. 1990; The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. Journal of Virology 64:5324–5332
    [Google Scholar]
  3. Cantareto L. A., Butler J. E., Osborne J. W. 1980; The binding characteristics of proteins for polystyrene and their significance in solid-phase immunoassays. Analytical Biochemistry 105:375–382
    [Google Scholar]
  4. Chang L.-J., Ganem D., Varmus H. E. 1990; Mechanism of translation of the hepadnaviral polymerase (P) gene. Proceedings of the National Academy of Sciences, USA 87:5158–5162
    [Google Scholar]
  5. Ender G. H., Ganem D., Varmus H. E. 1987; 5′-terminal sequences influence the segregation of ground squirrel hepatitis virus RNAs into polyribosomes and viral core particles. Journal of Virology 61:35–41
    [Google Scholar]
  6. Fouillot N., Rossignol J.-M. 1996; Translational stop codons in the precore sequence of hepatitis B virus pre-C RNA allow translation reinitiation at downstream AUGs. Journal of General Virology 77:1123–1127
    [Google Scholar]
  7. Fouillot N., Tlouzeau S., Rossignol J.-M., Jean-Jean O. 1993; Translation of the hepatitis B virus P gene by ribosomal scanning as an alternative to internal initiation. Journal of Virology 67:4886–4895
    [Google Scholar]
  8. Galibert F., Mandart E., Fitoussi F., Tiollais P., Charney P. 1979; Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli . Nature 281:646–650
    [Google Scholar]
  9. Galibert F., Chen T. N., Mandart E. 1982; Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with hepatitis B virus sequence. Journal of Virology 41:51–65
    [Google Scholar]
  10. Hatsuzawa K., Tagaya M., Mizushima S. 1997; The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. Journal of Biochemistry 121:270–277
    [Google Scholar]
  11. Hirsch R. C., Lavine J. E., Chang J. E., Varmus H. E., Ganem D. 1990; Polymerase gene products of hepatitis B virus are required for genomic RNA packaging as well as for reverse transcription. Nature 344:552–555
    [Google Scholar]
  12. Hwang W.-L., Su T.-S. 1998; Translational regulation of hepatitis B virus polymerase gene by termination–reinitiation of an upstream minicistron in a length-dependent manner. Journal of General Virology 79:2181–2189
    [Google Scholar]
  13. Junker-Niepmann M., Bartenschlager R., Schaller H. 1990; A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO Journal 9:3389–3396
    [Google Scholar]
  14. Kozak M. 1989a; The scanning model for translation: an update. Journal of Cellular Biology 108:229–241
    [Google Scholar]
  15. Kozak M. 1989b; Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Molecular and Cellular Biology 9:5134–5142
    [Google Scholar]
  16. Kozak M. 1990; Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proceedings of the National Academy of Sciences, USA 87:8301–8305
    [Google Scholar]
  17. Kozak M. 1995; Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proceedings of the National Academy of Sciences, USA 92:2662–2666
    [Google Scholar]
  18. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  19. Lamberts C., Nassal M., Velhagen I., Zentgraf H., Schröder C. H. 1993; Precore-mediated inhibition of hepatitis B virus progeny DNA synthesis. Journal of Virology 67:3756–3762
    [Google Scholar]
  20. Lin C.-G., Lo S. J. 1992; Evidence for involvement of a ribosomal leaky scanning mechanism in the translation of the hepatitis B virus pol gene from the viral pregenomic RNA. Virology 188:342–352
    [Google Scholar]
  21. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. 1982; Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Research 42:3858–3863
    [Google Scholar]
  22. Nassal M., Rieger A. 1996; A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. Journal of Virology 70:2764–2773
    [Google Scholar]
  23. Nassal M., Junker-Niepmann M., Schaller H. 1990; Translational inactivation of RNA function: discrimination against a subset of genomic transcripts during HBV nucleocapsid assembly. Cell 63:1357–1363
    [Google Scholar]
  24. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering 10:1–6
    [Google Scholar]
  25. Ou J.-H. 1997; Molecular biology of hepatitis B virus e antigen. Journal of Gastroenterology and Hepatology 12: Suppl S178–S187
    [Google Scholar]
  26. Ou J.-H., Laub O., Rutter W. J. 1986; Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proceedings of the National Academy of Sciences, USA 83:1578–1582
    [Google Scholar]
  27. Ou J.-H., Bao H., Shih C., Tahara S. M. 1990; Preferred translation of human hepatitis B virus polymerase from core protein-but not from precore protein-specific transcript. Journal of Virology 64:4578–4581
    [Google Scholar]
  28. Pollack J. R., Ganem D. 1993; An RNA stem–loop structure directs hepatitis B virus genomic RNA encapsidation. Journal of Virology 67:3254–3263
    [Google Scholar]
  29. Rieger A., Nassal M. 1996; Specific hepatitis B virus minus-strand DNA synthesis requires only the 5′ encapsidation signal and the 3′-proximal direct repeat DR1*. Journal of Virology 70:585–589
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Scaglioni P. P., Melegari M., Wands J. R. 1997; Posttranscriptional regulation of hepatitis B virus replication by the precore protein. Journal of Virology 71:345–353
    [Google Scholar]
  32. Schlicht H. J., Salfeld J., Schaller H. 1987; The duck hepatitis B virus preC region encodes a signal sequence which is essential for the synthesis and secretion of processed core protein but not for virus formation. Journal of Virology 61:3701–3709
    [Google Scholar]
  33. Seeger C., Ganem D., Varmus H. E. 1984; Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. Journal of Virology 51:367–375
    [Google Scholar]
  34. Sprengel R., Kuhn C., Will H., Schaller H. 1985; Comparative sequence analysis of duck and human hepatitis B virus genomes. Journal of Medical Virology 15:323–333
    [Google Scholar]
  35. Sprengel R., Kaleta E. F., Will H. 1988; Isolation and characterization of a hepatitis B virus endemic in herons. Journal of Virology 62:3832–3839
    [Google Scholar]
  36. Standring D. N., Ou J.-H., Masiarz F. R., Rutter W. 1988; A signal peptide encoded within the precore region of hepatitis B virus directs the secretion of a heterogeneous population of e antigens in Xenopus oocytes. Proceedings of the National Academy of Sciences, USA 85:8405–8409
    [Google Scholar]
  37. Tavis J. E., Perri S., Ganem D. 1994; Hepadnavirus reverse transcription initiates within the stem–loop of the RNA packaging signal and employs a novel strand transfer. Journal of Virology 68:3536–3543
    [Google Scholar]
  38. Tavis J. E., Massey B., Gong Y. 1998; The duck hepatitis B virus polymerase is activated by its RNA packaging signal, e. Journal of Virology 72:5789–5796
    [Google Scholar]
  39. Tinoco I., Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  40. Walter P., Johnson A. E. 1994; Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annual Review of Cell Biology 10:87–119
    [Google Scholar]
  41. Walter A. E., Turner D. H., Kim J., Lyttle M. H., Muller P., Mathews D. H., Zuker M. 1994; Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proceedings of the National Academy of Sciences, USA 91:9218–9222
    [Google Scholar]
  42. Wang G.-H., Seeger C. 1993; Novel mechanism for reverse transcription in hepatitis B virus. Journal of Virology 67:6507–6512
    [Google Scholar]
  43. Will H., Reiser W., Weimer T., Pfaff E., Buscher M., Sprengel R., Cattaneo R., Schaller H. 1987; Replication strategy of human hepatitis B virus. Journal of Virology 61:904–911
    [Google Scholar]
  44. Yaginuma K., Shirakata Y., Kobayashi M., Koike K. 1987; Hepatitis B virus particles are produced in a cell system by transient expression of transfected HBV DNA. Proceedings of the National Academy of Sciences, USA 84:2678–2682
    [Google Scholar]
  45. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-7-1769
Loading
/content/journal/jgv/10.1099/0022-1317-80-7-1769
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error