1887

Abstract

Rabies virus glycoprotein (G) is a trimeric type I transmembrane glycoprotein that mediates both virus receptor recognition and low pH-induced membrane fusion. G can assume three different states: the ‘native’ state (N) detected at the virus surface, which is responsible for receptor binding, the activated hydrophobic state (A), which interacts with the target membrane as a first step in the fusion process, and the fusion-inactive conformation (I). These three states, which are structurally different, are in a pH-dependent equilibrium. This equilibrium is shifted toward the I state at low pH. This paper includes an investigation of the structure of the ectodomain of the PV strain of rabies virus when it is synthesized as a soluble form (G1-439) lacking the transmembrane and intracytoplasmic domains (residues 440-505). It is shown that, whatever the extracellular pH, G1-439 is secreted as a monomer that has the antigenic characteristics of the I state. This I-like state is not acquired in the acidic compartments of the Golgi but directly in the endoplasmic reticulum. Finally, membrane anchorage by the G transmembrane domain (G1-461) is sufficient for the G ectodomain to be folded into the native N form. These results emphasize the role of the G transmembrane domain in the correct folding of the ectodomain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-7-1647
1999-07-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/7/0801647a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-7-1647&mimeType=html&fmt=ahah

References

  1. Anilionis A., Wunner W. H., Curtis P. J. 1981; Structure of the glycoprotein gene in rabies virus. Nature 294:275–278
    [Google Scholar]
  2. Bowman E. J., Siebers A., Altendorf K. 1988; Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proceedings of the National Academy of Sciences, USA 85:7972–7976
    [Google Scholar]
  3. Carr C. M., Chaudhry C., Kim P. S. 1997; Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proceedings of the National Academy of Sciences, USA 94:14306–14313
    [Google Scholar]
  4. Chen J., Wharton S. A., Weissenhorn W., Calder L. J., Hughson F. M., Skehel J. J., Wiley D. C. 1995; membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. Proceedings of the National Academy of Sciences, USA 92:12205–12209
    [Google Scholar]
  5. Clague M. J., Schoch C., Zech L., Blumenthal R. 1990; Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octade-cylrhodamine fluorescence. Biochemistry 29:1303–1308
    [Google Scholar]
  6. Cosson P., Bonifacino J. S. 1992; Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 258:659–662
    [Google Scholar]
  7. Davis S. J., Ward H. A., Puklavec M. J., Willis A. C., Williams A. F., Barclay A. N. 1990; High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. Journal of Biological Chemistry 265:10410–10418
    [Google Scholar]
  8. Doms R. W., Russ G., Yewdell J. W. 1989; Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. Journal of Cell Biology 109:61–72
    [Google Scholar]
  9. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings ofthe National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  10. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. 1988; Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. Journal of Biological Chemistry 263:18545–18552
    [Google Scholar]
  11. Gaudin Y. 1997; Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones. Journal of Virology 71:3742–3750
    [Google Scholar]
  12. Gaudin Y., Ruigrok R. W. H., Tuffereau C., Knossow M., Flamand A. 1992; Rabies virus glycoprotein is a trimer. Virology 187:627–632
    [Google Scholar]
  13. Gaudin Y., Ruigrok R. W. H., Knossow M., Flamand A. 1993; Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. Journal of Virology 67:1365–1372
    [Google Scholar]
  14. Gaudin Y., Tuffereau C., Durrer P., Flamand A., Ruigrok R. W. H. 1995a; Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G):G is transported in a fusion-inactive state-like conformation. Journal of Virology 69:5528–5534
    [Google Scholar]
  15. Gaudin Y., Ruigrok R. W. H., Brunner J. 1995b; Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. Journal of General Virology 76:1541–1556
    [Google Scholar]
  16. Godet M., Rasschaert D., Laude H. 1991; Processing and antigenicity of entire and anchor-free spike glycoprotein S of coronavirus TGEV expressed by recombinant baculovirus. Virology 185:732–740
    [Google Scholar]
  17. Henkel J. R., Weisz O. A. 1998; Influenza virus M2 protein slows traffic along the secretory pathway. pH perturbation of acidified compartments affects early Golgi transport steps. Journal of Biological Chemistry 273:6518–6524
    [Google Scholar]
  18. Lafay F., Benmansour A., Chebli K., Flamand A. 1996; Immunodominant epitopes defined by a yeast-expressed library of random fragments of the rabies virus glycoprotein map outside major antigenic sites. Journal of General Virology 77:339–346
    [Google Scholar]
  19. Lafon M., Wiktor T. J., Macfarlan R. I. 1983; Antigenic sites of the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. Journal of General Virology 64:843–851
    [Google Scholar]
  20. Pak C. C., Puri A., Blumenthal R. 1997; Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry 36:8890–8896
    [Google Scholar]
  21. Parker B. A., Stark G. R. 1979; Regulat ion of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. Journal of Virology 31:360–369
    [Google Scholar]
  22. Pekosz A., Gonzalez-Scarano F. 1996; The extracellular domain of La Crosse virus G1 forms oligomers and undergoes pH-dependent conformational changes. Virology 225:243–247
    [Google Scholar]
  23. Préhaud C., Coulon P., Lafay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology 62:1–7
    [Google Scholar]
  24. Raux H., Coulon P., Lafay F., Flamand A. 1995; Monoclonal antibodies which recognize the acidic configuration of the rabies glycoprotein at the surface ofthe virion can be neutralizing. Virology 210:400–408
    [Google Scholar]
  25. Ruigrok R. W. H., Martin S. R., Wharton S. A., Skehel J. J., Bayley P. M., Wiley D. C. 1986; Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–497
    [Google Scholar]
  26. Saraste J., Palade G. E., Farquhar M. G. 1986; Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proceedings of the National Academy of Sciences, USA 83:6425–6429
    [Google Scholar]
  27. Singh I., Doms R. W., Wagner K. R., Helenius A. 1990; Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin. EMBO Journal 9:631–639
    [Google Scholar]
  28. Sisk W. P., Bradley J. D., Leipold R. J., Stoltzfus A. M., Ponce de Leon M., Hilf M., Peng C., Cohen G. H., Eisenberg R. J. 1994; High-level expression and purification of secreted forms of herpes simplex virus type 1 glycoprotein gD synthesized by baculovirus-infected insect cells. Journal of Virology 68:766–775
    [Google Scholar]
  29. Tartakoff A. M. 1986; Temperature and energy dependence of secretory protein transport in the exocrine pancreas. EMBO Journal 5:1477–1482
    [Google Scholar]
  30. Tuffereau C., Benejean J., Roque Afonso A. M., Flamand A., Fishman M. C. 1998; Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. Journal of Virology 72:1085–1091
    [Google Scholar]
  31. Vanlandschoot P., Beirnaert E., Neirynck S., Saelens X., Jou W. M., Fiers W. 1996; Molecular and immunological characterization of soluble aggregated A/Victoria/3/75 (H3N2) influenza haemagglutinin expressed in insect cells. Archives of Virology 141:1715–1726
    [Google Scholar]
  32. Vanlandschoot P., Beirnaert E., Grooten J., Jou W. M., Fiers W. 1998; pH-dependent aggregation and secretion of soluble monomeric influenza hemagglutinin. Archives of Virology 143:227–239
    [Google Scholar]
  33. Weissenhorn W., Wharton S. A., Calder L. J., Earl P. L., Moss B., Aliprandis E., Skehel J. J., Wiley D. C. 1996; The ectodomain of HIV-1 env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminal fusion peptide. EMBO Journal 15:1507–1514
    [Google Scholar]
  34. Whitt M. A., Buonocore L., Prehaud C., Rose J. K. 1991; Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology 185:681–688
    [Google Scholar]
  35. Wojczyk B., Shakin-Eshleman S. H., Doms R. W., Xiang Z. Q., Ertl H. C. J., Wunner W. H., Spitalnik S. L. 1995; Stable secretion of a soluble, oligomeric form of rabies virus glycoprotein: influence of N-glycan processing on secretion. Biochemistry 34:2599–2609
    [Google Scholar]
  36. Wu H., Kwong P. D., Hendrickson W. A. 1997; Dimeric association and segmental variability in the structure of human CD4. Nature 387:527–530
    [Google Scholar]
  37. Wunner W. H., Reagan K. J., Koprowski H. 1984; Characterization of saturable binding sites for rabies virus. Journal of Virology 50:691–697
    [Google Scholar]
  38. Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y. 1991; BafilomycinAl, a specific inhibitor ofvacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. Journal of Biological Chemistry 266:17707–17712
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-80-7-1647
Loading
/content/journal/jgv/10.1099/0022-1317-80-7-1647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error