1887

Abstract

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus and an important human pathogen. Initiation of the EBV lytic cycle is dependent upon transcription of the EBV BZLF1 gene. Our previous studies of transcriptional regulation of the BZLF1 Z promoter (Zp) in human SCC12F epithelial cells identified a region within Zp that is responsive to epithelial cell differentiation. In the present study, we localize this differentiation responsive element to the CREB/AP-1-like binding site (TGACATCA) between -67 to -60 bp within Zp, previously designated ZII, and furthermore show that homodimers and heterodimers of CREB and ATF-1 specifically bind ZII. Consistent with a regulatory role for CREB and ATF-1 in differentiation dependent BZLF1 expression, ZII was able to bind approximately 3-fold more CREB and ATF-1 when incubated with nuclear extract obtained from populations of SCC12F cells enriched for the differentiated phenotype than when incubated with extract obtained from populations enriched for the undifferentiated phenotype. In addition, CREB and ATF-1 were found to increase in abundance during SCC12F differentiation. These results indicate a regulatory role for CREB and ATF-1 in differentiation-dependent expression of BZLF1 in human epithelial cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-6-1501
1999-06-01
2023-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/6/0801501a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-6-1501&mimeType=html&fmt=ahah

References

  1. Benbrook D. M., Jones N. C. 1990; Heterodimer formation between CREB and JUN proteins. Oncogene 5:295–302
    [Google Scholar]
  2. Bowlus C. L., McQuillan J. J., Dean D. C. 1991; Characterization of three different elements in the 5′-flanking region of the fibronectin gene which mediate a transcriptional response to cAMP. Journal of Biological Chemistry 266:1122–1127
    [Google Scholar]
  3. Chatila T., Ho N., Liu P., Liu S., Mosialos G., Kieff E., Speck S. H. 1997; The Epstein–Barr virus-induced Ca2+/calmodulin-dependent kinase typelV/Gr promotes a Ca2+-dependent switch from latency to viral replication. Journal of Virology 71:6560–6567
    [Google Scholar]
  4. Chevallier-Greco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein–Barr virus (EBV)-encoded transacting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO Journal 5:3243–3249
    [Google Scholar]
  5. Countryman J., Miller G. 1985; Activation of expression of latent Epstein–Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proceedings of the National Academy of Sciences, USA 82:4085–4089
    [Google Scholar]
  6. Crawford D. H., Ando I. 1986; EB virus induction is associated with B cell maturation. Immunology 59:405–409
    [Google Scholar]
  7. Daibata M., Speck S. H., Mulder C., Sairenji T. 1994; Regulation of the BZLF1 promoter of Epstein–Barr virus by second messengers in anti-immunoglobulin-treated B cells. Virology 198:446–454
    [Google Scholar]
  8. Dean D. C., Blakeley M. S., Newby R. F., Ghazal P., Hennighausen L., Bourgeois S. 1989; Forskolin inducibility and tissue-specific expression of the fibronectin promoter. Molecular and Cellular Biology 9:1498–1506
    [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11:1475–1489
    [Google Scholar]
  10. Dover R., Watt F. M. 1987; Measurement of the rate of epidermal terminal differentiation: expression of involucrin by S-phase keratino-cytes in culture and in psoriatic plaques. Journal of Investigative Dermatology 89:349–352
    [Google Scholar]
  11. Ellis M. J. C., Lindon A. C., Flint K. J., Jones N. C., Goodbourn S. 1995; Activating transcription factor-1 is a specific antagonist of the cyclic adenosine 3′, 5′-monophosphate (cAMP) response element-binding protein-1-mediated response to cAMP. Molecular Endocrinology 9:255–265
    [Google Scholar]
  12. Flamand L., Menezes J. 1996; Cyclic AMP-responsive element-dependent activation of Epstein–Barr virus zebra promoter by human herpesvirus 6. Journal of Virology 70:1784–1791
    [Google Scholar]
  13. Flemington E., Speck S. H. 1990a; Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. Journal of Virology 64:1217–1226
    [Google Scholar]
  14. Flemington E., Speck S. H. 1990b; Autoregulation of Epstein–Barr virus putative lytic switchgene BZLF1. JournalofVirology 64:1227–1232
    [Google Scholar]
  15. Gandarillas A., Watt F. M. 1995; Changes in expression of the fos and jun families and myc network during terminal differentiation of human keratinocytes. Oncogene 11:1403–1407
    [Google Scholar]
  16. Golden H. D., Chang R. S., Prescott W., Simpson E., Cooper T. Y. 1973; Leukocyte-transforming agent: prolonged excretion by patients with mononucleosis and excretion by normal individuals. Journal of Infectious Diseases 127:471–473
    [Google Scholar]
  17. Gonzalez G. A., Montminy M. R. 1989; Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680
    [Google Scholar]
  18. Green H. 1977; Terminal differentiation of cultured human epidermal cells. Cell 11:405–416
    [Google Scholar]
  19. Henle G., Henle W., Diehl V. 1968; Relation of Burkitt s tumor-associated herpes-type virus to infectious mononucleosis. Proceedings of the National Academy of Sciences, USA 59:94–101
    [Google Scholar]
  20. Hsueh Y.-P., Lai M.-Z. 1995; Overexpression of activation transcriptional factor 1 in lymphomas and in activated lymphocytes. Journal of Immunology 154:5675–5683
    [Google Scholar]
  21. Israele V., Shirley P., Sixbey J. W. 1991; Excretion of the Epstein–Barr virus from the genital tract of men. Journal of Infectious Diseases 163:1341–1343
    [Google Scholar]
  22. Karimi L., Crawford D. H., Speck S., Nicholson L. J. 1995; Identification of an epithelial cell differentiation responsive region within the BZLF1 promoter of the Epstein–Barr virus. Journal of General Virology 76:759–765
    [Google Scholar]
  23. Kieff E. 1996; Epstein–Barr virus and its replication. In Fields Virology 3rd edn, pp 2343–2396 Edited by Fields B., Knipe D., Howley P. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  24. Laux G., Freese U. K., Fischer R., Polack A., Kofler E., Bornkamm G. W. 1988; TPA-inducible Epstein–Barr virus genes in Raji cells and their regulation. Virology 162:503–507
    [Google Scholar]
  25. Lee C. Q., Yun Y., Hoeffler J. P., Habener J. F. 1990; Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phosphorylated subdomains. EMBO Journal 9:4455–4465
    [Google Scholar]
  26. Li Q. X., Young L. S., Niedobitek G., Dawson C. W., Birkenbach M., Wang F., Rickinson A. B. 1992; Epstein–Barr virus infection and replication in a human epithelial cell system. Nature 356:347–350
    [Google Scholar]
  27. Liu F., Thompson M. A., Wagner S., Greenberg M. E., Green M. R. 1993; Activating transcription factor-1 can mediate Ca2+- and cAMP-inducible transcriptional activation. Journal of Biological Chemistry 268:6714–6720
    [Google Scholar]
  28. Liu S., Borras A. M., Liu P., Suske G., Speck S. H. 1997a; Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein–Barr virus lytic switch BZLF1 gene promoter. Virology 228:11–18
    [Google Scholar]
  29. Liu S., Liu P., Borras A., Chatila T., Speck S. H. 1997b; Cyclosporin A-sensitive induction of the Epstein–Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO Journal 16:143–153
    [Google Scholar]
  30. Luka J., Kallin B., Klein G. 1979; Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–231
    [Google Scholar]
  31. Manet E., Gruffat H., Trescol-Biemont M. C., Moreno I., Chambard P., Giot J. F., Sergeant A. 1989; Epstein –Barr virus bicistronic mRNA’s generated by facultative splicing code for two transcriptional trans-activators. EMBO Journal 8:1819–1826
    [Google Scholar]
  32. Meyer T. E., Habener J. F. 1993; Cyclic adenosine 3, 5-mono-phosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocrine Reviews 14:269–290
    [Google Scholar]
  33. Miyashita E. M., Yang B., Lam K. M. C., Crawford D. H., Thorley-Lawson D. A. 1995; A novel form of Epstein–Barr virus latency in normal B cells in vivo. Cell 80:593–601
    [Google Scholar]
  34. Montalvo E. A., Shi Y., Shenk T. E., Levine A. J. 1991; Negative regulation of the BZLF1 promoter of Epstein–Barr virus. Journal of Virology 65:3647–3655
    [Google Scholar]
  35. Montalvo E. A., Cottam M., Hill S., Wang Y.-C. J. 1995; YY1 binds to and regulates cis-acting negative elements in the Epstein–Barr virus BZLF1 promoter. Journal of Virology 69:4158–4165
    [Google Scholar]
  36. Nicholson L. J., Watt F. M. 1991; Decreased expression of fibronectin and the α5β1 integrin during terminal differentiation of human keratinocytes. Journal of Cell Science 98:225–232
    [Google Scholar]
  37. Nicholson L. J., Hopwood P., Johannessen I., Salisbury J. R., Codd J., Thorley-Lawson D., Crawford D. H. 1997; Epstein–Barr virus latent membrane protein does not inhibit differentiation and induces tumorigenicity of human epithelial cells. Oncogene 15:275–283
    [Google Scholar]
  38. Niederman J. C., Evans A. S., Subrahmanyan L., McCollum R. W. 1970; Prevalence, incidence and persistence of EB virus antibody in young adults. New England Journal of Medicine 282:361–365
    [Google Scholar]
  39. Pattengale P. K., Smith R. W., Gerber P. 1973; Selective transformation of B lymphocytes by EB virus. Lancet ii:93–94
    [Google Scholar]
  40. Pope J. H., Horne M. K., Scott W. 1968; Transformation of foetal human leucocytes in vitro by infiltrates of a human leukaemia cell line containing herpes-like virus. International Journal of Cancer 3:857–866
    [Google Scholar]
  41. Rheinwald J. G., Beckett M. A. 1980; Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell 22:629–632
    [Google Scholar]
  42. Rice R. H., Green H. 1979; Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18:681–694
    [Google Scholar]
  43. Rickinson A. B., Kieff E. 1996; Epstein -Barr virus. In Fields Virology 3rd edn, pp 2397–2446 Edited by Fields B., Knipe D., Howley P. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  44. Sassone-Corsi P., Visvader J., Ferland L., Mellon P. L., Verma I. M. 1988; Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes & Development 2:1529–1538
    [Google Scholar]
  45. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  46. Schwarzmann F., Prang N., Reichelt B., Rinkes B., Haist S., Marschall M., Wolf H. 1994; Negatively cis-acting elements in the distal part of the promoter of Epstein–Barr virus trans-activator gene BZLF1. Journal of General Virology 75:1999–2006
    [Google Scholar]
  47. Sheng M., Thompson M. A., Greenberg M. E. 1991; CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430
    [Google Scholar]
  48. Shimomura A., Ogawa Y., Kitani T., Fujisawa H., Hagiwara M. 1996; Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein. Journal of Biological Chemistry 271:17957–17960
    [Google Scholar]
  49. Sixbey J. W. 1989; Epstein -Barr virus and epithelial cells. In Advances in Viral Oncology pp 187–202 Edited by Klein G. New York: Raven Press;
    [Google Scholar]
  50. Sixbey J. W., Vesterinen E. H., Nedrud J. G., Raab-Traub N., Walton L. A., Pagano J. S. 1983; Replication of Epstein–Barr virus in human epithelial cells infected in vitro. Nature 306:480–483
    [Google Scholar]
  51. Sixbey J. W., Nedrud J. G., Raab-Traub N., Hanes R. A., Pagano J. S. 1984; Epstein–Barr virus replication in oropharyngeal epithelial cells. New England Journal of Medicine 310:1225–1230
    [Google Scholar]
  52. Sixbey J. W., Lemon S. M., Pagano J. S. 1986; A second site for Epstein–Barr virus shedding: the uterine cervix. Lancet ii:1122–1124
    [Google Scholar]
  53. Sun P., Enslen H., Myung P. S., Maurer R. A. 1994; Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes & Development 8:2527–2539
    [Google Scholar]
  54. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. Journal of Virology 63:445–449
    [Google Scholar]
  55. Takada K., Shimizu N., Sakuma S., Ono Y. 1986; trans Activation of the latent Epstein–Barr virus (EBV) genome after transfection of the EBV DNA fragment. Journal of Virology 57:1016–1022
    [Google Scholar]
  56. Tovey M. G., Lenoir G., Begon-Lours J. 1978; Activation of latent Epstein–Barr virus by antibody to human IgM. Nature 276:270–272
    [Google Scholar]
  57. Urier G., Buisson M., Chambard P., Sergeant A. 1989; The Epstein–Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. EMBO Journal 8:1447–1453
    [Google Scholar]
  58. Wang Y. C. J., Huang J.-M., Montalvo E. A. 1997; Characterization of proteins binding to the ZII element in the Epstein–Barr virus BZLF1 promoter: transactivation by ATF1. Virology 227:323–330
    [Google Scholar]
  59. Zur Hausen H., O’Neill F. J., Freese U. K., Hecker E. 1978; Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature 272:373–375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-6-1501
Loading
/content/journal/jgv/10.1099/0022-1317-80-6-1501
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error