In order to elucidate the function of the C-terminal region of cowpea chlorotic mottle bromovirus (CCMV) movement protein (MP) in cell-to-cell movement, a set of deletions ranging from 10 to 80 amino acids (deltaMP10, deltaMP20, deltaMP33, deltaMP43, deltaMP60 and deltaMP80) was engineered into the MP gene encoded by the biologically active clone C3/deltaCP-EGFP, a variant of CCMV RNA3 that contained wild-type (wt) MP and the enhanced green fluorescent protein (EGFP) gene in place of the coat protein (CP). The effect of each MP deletion on cell-to-cell movement was examined in three susceptible host plants: Chenopodium quinoa, Nicotiana benthamiana and cowpea (Vigno sinensis cv. Black Eye). The results indicate that, except for mutant deltaMP43, infections resulting from the deletion mutants remained subliminal. Interestingly, infections resulting from inoculating mutant deltaMP43, which lacked the 43 most C-terminal amino acids, spread rapidly between cells and the number of infected cells expressing EGFP approached that of control inoculations made with C3/deltaCP-EGFP. To verify whether the presence of wt CP altered the movement behaviour of these mutants, each MP deletion was also incorporated into the genetic background of wt CCMV RNA3 (pCC3) and inoculated independently to all three hosts. The results suggest that the overall movement process exhibited by each MP mutant is influenced profoundly by the presence of CP and the particular host plant tested.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error