1887

Abstract

The herpesvirus saimiri (HVS) gene product encoded by ORF 57 shares limited C-terminal similarity with herpes simplex virus 1 ICP27, a protein that has been demonstrated to be involved in the inhibition of host-cell splicing and is responsible for the redistribution of components of the spliceosome. It has previously been shown that ORF 57 can either activate or repress viral gene expression by a post-transcriptional mechanism. Furthermore, repression of gene expression by ORF 57 is dependent on the presence of an intron within the target gene coding region. In this report, it is shown that HVS infection results in the redistribution of the SC-35 splicing factor in the infected cell nucleus. Furthermore, the redistributed SC-35 colocalized with the ORF 57 protein product and expression of the protein alone was sufficient to cause the redistribution of the spliceosome components. These results suggest that the mechanism by which ORF 57 down-regulates expression of intron-containing genes involves the redistribution of the spliceosome complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-5-1311
1999-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/5/0801311a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-5-1311&mimeType=html&fmt=ahah

References

  1. Albrecht J. C., Fleckenstein B. 1990; Structural organization of the conserved gene block of herpesvirus saimiri coding for DNA polymerase, glycoprotein B, and major DNA binding protein. Virology 174:533–542
    [Google Scholar]
  2. Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Beisinger B., Newman C., Wittman S., Craxton M. A., Coleman H., Fleckenstein B., Honess R. W. 1992; Primary structure of the herpesvirus saimiri genome. Journal of Virology 66:5047–5058
    [Google Scholar]
  3. Beisinger B., Muller-Fleckenstein I., Simmer B., Lang G., Wittmann S., Platzer E., Desrosiers R. C., Fleckenstein B. 1992; Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proceedings of the National Academy of Sciences, USA 89:3116–3119
    [Google Scholar]
  4. Brown C. R., Nakamura M. S., Mosca J. D., Hayward G. S., Straus S. E., Perera L. P. 1995; Herpes simplex virus trans–regulatory protein ICP27 stabilizes and binds to 3 ends of labile mRNA. Journal of Virology 69:7187–7195
    [Google Scholar]
  5. Bublot M., Lomonte P., Lequarre A. S., Albrecht J. C., Nicholas J., Fleckenstein B., Pastoret P. P., Thiry E. 1992; Genetic relationships between bovine herpesvirus 4 and the gammaherpesviruses Epstein–Barr and herpesvirus saimiri. Virology 190:654–665
    [Google Scholar]
  6. Fleckenstein B., Desrosiers R. C. 1982; Herpesvirus saimiri and herpesvirus ateles. In The Herpesviruses vol 1 pp 253–332 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  7. Fu X. D., Maniatis T. 1990; Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343:437–441
    [Google Scholar]
  8. Gompels U. A., Craxton M. A., Honess R. W. 1988a; Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein–Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  9. Gompels U. A., Craxton M. A., Honess R. W. 1988b; Conservation of glycoprotein H (gH) in herpesviruses : nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  10. Green M. R. 1991; Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annual Review of Cell Biology 7:559–599
    [Google Scholar]
  11. Hardwicke M. A., Sandri-Goldin R. M. 1994; The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. Journal of Virology 68:4797–4810
    [Google Scholar]
  12. Hardy W. R., Sandri-Goldin R. M. 1994; Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. Journal of Virology 68:7790–7799
    [Google Scholar]
  13. Hibbard M. K., Sandri-Goldin R. M. 1995; Arginine-rich regions succeeding the nuclear localization region of the herpes simplex virus type 1 regulatory protein ICP27 are required for efficient nuclear localization and late gene expression. Journal of Virology 69:4656–4667
    [Google Scholar]
  14. Kenney S., Holley-Guthrie E. A., Mar E.-C., Smith M. 1989; The Epstein–Barr virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. Journal of Virology 63:3878–3883
    [Google Scholar]
  15. Martin T. E., Barghusen S. C., Leser G. P., Spear P. G. 1987; Redistribution of nuclear ribonucleoprotein antigens during herpes simplex virus infection. Journal of Cell Biology 105:2069–2082
    [Google Scholar]
  16. Neipel F., Albrecht J. C., Fleckenstein B. 1997; Cell-homologous genes in the Kaposi′s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?. Journal of Virology 71:4187–4192
    [Google Scholar]
  17. Nicholas J., Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of sequence and function between the product of the 52-kilodalton immediate-early gene of herpesvirus saimiri and the BMLF1-encoded transcriptional effector (EB2) of Epstein–Barr virus. Journal of Virology 62:3250–3257
    [Google Scholar]
  18. Nicholas J., Coles L. S., Newman C., Honess R. W. 1991; Regulation of the herpesvirus saimiri (HVS) delayed-early 110-kilodalton promoter by HVS immediate-early gene products and a homolog of the Epstein–Barr virus R trans activator. Journal of Virology 65:2457–2466
    [Google Scholar]
  19. Perera L. P., Kaushal S., Kinchington P. R., Mosca J. D., Hayward G. S., Straus S. E. 1994; Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homolog ICP27. Journal of Virology 68:2468–2477
    [Google Scholar]
  20. Phelan A., Carmo-Fonseca M., McLaughlan J., Lamond A. I., Clements J. B. 1993; A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution. Proceedings of the National Academy of Sciences, USA 90:9056–9060
    [Google Scholar]
  21. Randall R. E., Honess R. W., O’Hare P. 1983; Proteins specified by herpesvirus saimiri: identification and properties of virus-specific polypeptides in productively infected cells. Journal of General Virology 64:19–35
    [Google Scholar]
  22. Russo J. J., Bohenzky R. A., Chien M. C., Chen J., Yan M., Maddalena D., Parry J. P., Peruzzi D., Edelman I. S., Chang Y., Moore P. S. 1996; Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences, USA 93:14862–14867
    [Google Scholar]
  23. Sandri-Goldin R. M., Hibbard M. K. 1996; The herpes simplex virus type 1 regulatory protein ICP27 coimmunoprecipitates with anti-Sm antiserum, and the C terminus appears to be required for this interaction. Journal of Virology 70:108–118
    [Google Scholar]
  24. Sandri-Goldin R. M., Hibbard M. K., Hardwicke M. A. 1995; The C-terminal repressor region of herpes simplex virus type 1 ICP27 is required for the redistribution of small nuclear ribonucleoprotein particles and splicing factor SC35; however, these alterations are not sufficient to inhibit host cell splicing. Journal of Virology 69:6063–6076
    [Google Scholar]
  25. Semmes O. J., Chen L., Sarisky R. T., Gao Z., Zhong L., Hayward S. D. 1998; Mta has properties of an RNA export protein and increases cytoplasmic accumulation of Epstein–Barr virus replication gene mRNA. Journal of Virology 72:9526–9534
    [Google Scholar]
  26. Stevenson A. J., Cooper M., Griffiths J. C., Gibson P. G., Whitehouse A., Jones E. F., Kinsey S. E., Markham A. F., Meredith D. M. 1999; Assessment of herpesvirus saimiri as a potential human gene therapy vector. Journal of Medical Virology 57:269–277
    [Google Scholar]
  27. Virgin H. W. IV, Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. Journal of Virology 71:5894–5904
    [Google Scholar]
  28. Whitehouse A., Stevenson A. J., Cooper M., Meredith D. M. 1997; Identification of a cis-acting element within the herpesvirus saimiri ORF 6 promoter that is responsive to the HVS.R transactivator. Journal of General Virology 78:1411–1415
    [Google Scholar]
  29. Whitehouse A., Cooper M., Hall K. T., Meredith D. M. 1998a; The open reading frame (ORF) 50a gene product regulates ORF 57 gene expression in herpesvirus saimiri. Journal of Virology 72:1967–1973
    [Google Scholar]
  30. Whitehouse A., Cooper M., Meredith D. M. 1998b; The immediate early gene product encoded by open reading frame 57 of herpesvirus saimiri modulates gene expression at a posttranscriptional level. Journal of Virology 72:857–861
    [Google Scholar]
  31. Winkler M., Rice S. A., Stamminger T. 1994; UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. Journal of Virology 68:3943–3954
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-5-1311
Loading
/content/journal/jgv/10.1099/0022-1317-80-5-1311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error