1887

Abstract

To study the molecular basis of virulence of viral haemorrhagic septicaemia virus (VHSV), we used a cross-reactive neutralizing MAb to select MAb-resistant (MAR) mutants with reduced pathogenicity for fish. From sequence determination of the G gene of MAR mutants, attenuated laboratory variant and avirulent field strains, we identified two distant regions of the glycoprotein associated with virulence: region I (aa 135-161), homologous to the putative fusion peptide of both rabies virus (RV) and vesicular stomatitis virus (VSV), and region II (surrounding aa 431-433), homologous to RV and VSV domains controlling the conformational changes necessary for the fusion process to take place. Simultaneous mutations in both regions resulted in the most attenuated phenotype and we obtained genetic evidence that regions I and II may be structurally linked. As the MAR mutants had mutations in or near domains involved in fusion, the fusion properties of VHSV and its variants were analysed. This work allowed us to postulate that the fusion domain of VHSV is probably constituted of two distinct regions of the protein connected through a disulfide bridge between cysteines 110 and 152. Finally, we obtained evidence suggesting that the pH threshold for fusion is a determinant for virulence: restriction of fusion to a more acidic pH was associated with attenuation for the variant tr25 which had a shift of the threshold for maximal fusion from pH 6.30 (for the parental strain) to pH 6.00; conversely, two field strains which had maximal fusion at pH 6.60 were the most virulent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-5-1221
1999-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/5/0801221a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-5-1221&mimeType=html&fmt=ahah

References

  1. Basurco B., Benmansour A. 1995; Distant strains of the fish rhabdovirus VHSV maintain a sixth functional cistron which codes for a nonstructural protein of unknown function. Virology 212:741–745
    [Google Scholar]
  2. Béarzotti M., Monnier A. F., Vende P., Grosclaude J., de Kinkelin P., Benmansour A. 1995; Antigenicity and role in pathogenicity of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV), a fish rhabdovirus. Veterinary Research 26:413–422
    [Google Scholar]
  3. Benmansour A., Brahimi M., Tuffereau C., Coulon P., Lafay F., Flamand A. 1992; Rapid sequence evolution of street rabies glycoprotein is related to the highly heterogeneous nature of the viral population. Virology 187:33–45
    [Google Scholar]
  4. Benmansour A., Paubert G., Bernard J., de Kinkelin P. 1994; The polymerase-associated protein (M1) and the matrix protein (M2) from a virulent and an avirulent strain of viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus. Virology 198:602–612
    [Google Scholar]
  5. Benmansour A., Basurco B., Monnier A. F., Vende P., Winton J. R., de Kinkelin P. 1997; Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral haemorrhagic septicaemia virus, a fish rhabdovirus. Journal of General Virology 78:2837–2846
    [Google Scholar]
  6. Bernard J., Lecoq-Xhoneux F., Rossius M., Thiry M. E., de Kinkelin P. 1990; Cloning and sequencing the messenger RNA of the N gene of viral haemorrhagic septicaemia virus. Journal of General Virology 71:1669–1674
    [Google Scholar]
  7. Blacklow S. C., Lu M., Kim P. S. 1995; A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34:14955–14962
    [Google Scholar]
  8. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
    [Google Scholar]
  9. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  10. Coll J. M. 1995a; The glycoprotein G of rhabdoviruses. Archives of Virology 140:827–851
    [Google Scholar]
  11. Coll J. M. 1995b; Heptad-repeat sequences in the glycoprotein of rhabdoviruses. Virus Genes 10:107–114
    [Google Scholar]
  12. Coulon P., Rollin P. E., Flamand A. 1983; Molecular basis of rabies virus virulence. II. Identification of a site on the CVS glycoprotein associated with virulence. Journal of General Virology 64:693–696
    [Google Scholar]
  13. de Kinkelin P., Le Berre M. 1977; Isolement dun rhabdovirus pathogene de la truite fario Salmo trutta . Comptes Rendus Academie des Sciences, Paris 284:101–104
    [Google Scholar]
  14. de Kinkelin P., Chilmonczyck S., Dorson M., Le Berre M., Baudouy A.M. 1979; Some pathogenic facets of rhabdoviral infection of salmonid fish. In Munich Symposia on Microbiology: Mechanisms of Viral Pathogenesis and Virulence pp 357–375 Edited by Bachmann P. A. Munich: WHO Collaborating Centre;
    [Google Scholar]
  15. Devereux J., Haerberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  16. Dietzschold B., Wunner W. H., Wiktor T. J., Lopes A. D., Lafon M., Smith C. L., Koprowski H. 1983; Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proceedings of the National Academy of Sciences, USA 80:70–74
    [Google Scholar]
  17. Durrer P., Gaudin Y., Ruigrok R. W. H., Graf R., Brunner J. 1995; Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. Journal ofBiological Chemistry 270:17575–17581
    [Google Scholar]
  18. Einer-Jensen K., Krogh T. N., Roepstorff P., Lorenzen N. 1998; Characterization of intramolecular disulphide bonds and secondary modifications of the glycoprotein from viral hemorrhagic septicemia virus, a fish rhabdovirus. Journal of Virology 72:10189–10196
    [Google Scholar]
  19. Estepa A., Coll J. M. 1996; Pepscan mapping and fusion-related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdo-virus. Virology 216:60–70
    [Google Scholar]
  20. Fass D., Harrison S. C., Kim P. S. 1996; Retrovirus envelope domain at 1.7 Ǻ resolution. Nature Structural Biology 3:465–469
    [Google Scholar]
  21. Fineschi B., Miller J. 1997; Endosomal proteases and antigen processing. Trends in Biochemical Sciences 22:377–382
    [Google Scholar]
  22. Fredericksen B. L., Whitt M. A. 1995; Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. Journal of Virology 69:1435–1443
    [Google Scholar]
  23. Fredericksen B. L., Whitt M. A. 1996; Mutations at two conserved amino acids in the glycoprotein of vesicular stomatitis virus affect pH-dependent conformational changes and reduce the pH threshold for membrane fusion. Virology 217:49–57
    [Google Scholar]
  24. Fredericksen B. L., Whitt M. A. 1998; Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrate a critical role for maintaining a high pH threshold for membrane fusion in viral fitness. Virology 240:349–358
    [Google Scholar]
  25. Gaudin Y., Ruigrok R. W. H., Knossow M., Flamand A. 1993; Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. Journal of Virology 67:1365–1372
    [Google Scholar]
  26. Gaudin Y., Ruigrok R. W. H., Brunner J. 1995; Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. Journal of General Virology 76:1541–1556
    [Google Scholar]
  27. Gaudin Y., Raux H., Flamand A., Ruigrok R. W. H. 1996; Identification of amino acids controlling the low-pH-induced conformational change of rabies virus glycoprotein. Journal of Virology 70:7371–7378
    [Google Scholar]
  28. Kim C. H., Winton J. R., Leong J. C. 1994; Neutralization-resistant variants of infectious hematopoeitic necrosis virus have altered virulence and tissue tropism. Journal of Virology 68:8447–8453
    [Google Scholar]
  29. Lecocq-Xhonneux F., Thiry M., Dheur I., Rossius M., Vanderheijden N., Martial J., de Kinkelin P. 1994; A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces protective immunity in rainbow trout. Journal of General Virology 75:1579–1587
    [Google Scholar]
  30. Li Y., Drone C., Sat E., Ghosh H. P. 1993; Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. Journal of Virology 67:4070–4077
    [Google Scholar]
  31. Lorenzen N., Olesen N. J., Jorgensen P. E. V. 1990; Neutralization of Egtved virus pathogenicity to cell cultures and fish by monoclonal antibodies to the viral G protein. Journal of General Virology 71:561–567
    [Google Scholar]
  32. Lu M., Blacklow S. C., Kim P. S. 1995; A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Structural Biology 2:1075–1082
    [Google Scholar]
  33. Préhaud C., Coulon P., Lafay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology 62:1–7
    [Google Scholar]
  34. Rose J. K., Gallione C. J. 1981; Nucleotide sequence of the mRNAs encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. Journal of Virology 39:519–528
    [Google Scholar]
  35. Seif I., Coulon P., Rollin P. E., Flamand A. 1985; Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. Journal of Virology 53:926–934
    [Google Scholar]
  36. Shokralla S., He Y., Wanas E., Ghosh H. P. 1998; Mutations in a carboxy-terminal region of vesicular stomatitis virus glycoprotein G that affect membrane fusion activity. Virology 242:39–50
    [Google Scholar]
  37. Thiry M., Lecoq-Xhonneux F., Dheur I., Renard A., de Kinkelin P. 1991; Sequence of a cDNA carrying the glycoprotein gene and part of the matrix protein M2 gene of viral haemorrhagic septicaemia virus, a fish rhabdovirus. Biochimica et Biophysica Acta 1090:345–347
    [Google Scholar]
  38. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1986; Walking along the rabies genome: is the large G-L intergenic region a remnant gene?. Proceedings of the National Academy of Sciences, USA 83:3914–3918
    [Google Scholar]
  39. Tuffereau C., Leblois H., Benejean J., Coulon P., Lafay F., Flamand A. 1989; Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172:206–212
    [Google Scholar]
  40. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430
    [Google Scholar]
  41. Zhang L., Ghosh H. P. 1994; Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. Journal of Virology 68:2186–2193
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-5-1221
Loading
/content/journal/jgv/10.1099/0022-1317-80-5-1221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error