1887

Abstract

The crystal structure coordinates of the hepatitis C virus NS3 protease (HCVpro) were used to develop an homology model of the dengue 2 virus NS3 protease (DEN2pro). The amino acid sequence of DEN2pro accommodates the same alpha-helices, beta-sheets and protein-binding domains as its HCVpro counterpart, but the model predicts a number of significant differences for DEN2pro and its interactions with substrates and cofactor. Whereas HCVpro contains a Zn-binding site, there is no equivalent metal-binding motif in DEN2pro. It is possible that the structural role played by the zinc ion may be provided by a salt bridge between Glu and Lys. The two-component viral protease comprises NS3 and a virus-encoded cofactor, NS4A for HCV and NS2B for DEN2. Previous studies have identified a central 40 amino acid cofactor domain of the dengue virus NS2B that is required for protease activity. Modelling of the putative interactions between DEN2pro and its cofactor suggests that a 12 amino acid hydrophobic region within this sequence (GSSPILSITISE) may associate directly with NS3. Modelling also suggests that the substrate binds in an extended conformation to the solvent-exposed surface of the protease, with a P1-binding site that is significantly different from its HCV counterpart. The model described in this study not only reveals unique features of the flavivirus protease but also provides a structural basis for both cofactor and substrate binding that should prove useful in the early design and development of inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-5-1167
1999-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/5/0801167a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-5-1167&mimeType=html&fmt=ahah

References

  1. Arias C. F., Preugschat F., Strauss J. H. 1993; Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899
    [Google Scholar]
  2. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. 1994; Kinetic and structural analyses of hepatitis C virus polyprotein processing. Journal of Virology 68:5045–5055
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1989; Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639
    [Google Scholar]
  4. Bazan J. F., Fletterick R. J. 1990; Structural and catalytic models of trypsin-like viral proteases. Seminars in Virology 1:311–322
    [Google Scholar]
  5. Biedrzycka A., Cauchi M. R., Bartholomeusz A., Gorman J. J., Wright P. J. 1987; Characterization of protease cleavage sites involved in the formation of the envelope glycoprotein and three non-structural proteins of dengue virus type 2, New Guinea C strain. Journal of General Virology 68:1317–1326
    [Google Scholar]
  6. Butkiewicz N. J., Wendel M., Zhang R., Jubin R., Pichardo J., Smith E. B., Hart A. M., Ingram R., Durkin J., Mui P. W., Murray M. G., Ramanathan L., Dasmahapatra B. 1996; Enhancement of hepatitis C virus NS3 proteinase activity by association with NS4A-specific synthetic peptides: identification of sequence and critical residues of NS4A for the cofactor activity. Virology 225:328–338
    [Google Scholar]
  7. Castle E., Leidner U., Nowak T., Wengler G., Wengler G. 1986; Primary structure of the West Nile flavivirus genome region coding for all nonstructural proteins. Virology 149:10–26
    [Google Scholar]
  8. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990a; Flavivirus genome organization, expression, and replication. Annual Review of Microbiology 44:649–688
    [Google Scholar]
  9. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M. 1990b; Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proceedings of the National Academy of Sciences, USA 87:8898–8902
    [Google Scholar]
  10. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M. 1993; Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B–NS3 complex formation, and viral replication. Journal of Virology 67:6797–6807
    [Google Scholar]
  11. Choi H.-K., Tong L., Minor W., Dumas P., Boege U., Rossmann M. G., Wengler G. 1991; Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354:37–43
    [Google Scholar]
  12. Choi H.-K., Lu G., Lee S., Wengler G., Rossmann M. G. 1997; Structure of Semliki Forest virus core protein. Proteins 27:345–359
    [Google Scholar]
  13. Clum S., Ebner K. E., Padmanabhan R. 1997; Cotranslational membrane insertion of the serine proteinase precursor NS2B–NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. Journal of Biological Chemistry 272:30715–30723
    [Google Scholar]
  14. De Francesco R., Urbani A., Nardi M. C., Tomei L., Steinkuhler C., Tramontano A. 1996; A zinc binding site in viral serine proteinases. Biochemistry 35:13282–13287
    [Google Scholar]
  15. Edwards P. D., Bernstein P. R. 1994; Synthetic inhibitors of elastase. Medicinal Research Reviews 14:127–194
    [Google Scholar]
  16. Fairlie D. P., West M. L., Wong A. K. 1998; Towards protein surface mimetics. Current Medicinal Chemistry 5:29–62
    [Google Scholar]
  17. Falgout B., Markoff L. 1995; Evidence that flavivirus NS1–NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. Journal of Virology 69:7232–7243
    [Google Scholar]
  18. Falgout B., Pethel M., Zhang Y.-M., Lai C.-J. 1991; Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology 65:2467–2475
    [Google Scholar]
  19. Falgout B., Miller R. H., Lai C. J. 1993; Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. Journal of Virology 67:2034–2042
    [Google Scholar]
  20. Fu J., Tan B. H., Yap E.-H., Chan Y.-C., Tan Y.-H. 1992; Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90). Virology 188:953–958
    [Google Scholar]
  21. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989; N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research 17:3889–3897
    [Google Scholar]
  22. Grakoui A., McCourt D. W., Wychowski C., Feinstone S. M., Rice C. M. 1993; Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. Journal of Virology 67:2832–2843
    [Google Scholar]
  23. Kim J. L., Morgenstern K. A., Lin C., Fox T., Dwyer M. D., Landro J. A., Chambers S. P., Markland W., Lepre C. A., O’Malley E. T., Harbeson S. L., Rice C. M., Murcko M. A., Caron P. R., Thomson J. A. 1996; Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355
    [Google Scholar]
  24. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  25. Lin C., Amberg S. M., Chambers T. J., Rice C. M. 1993; Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. Journal of Virology 67:2327–2335
    [Google Scholar]
  26. Lin C., Thomson J. A., Rice C. M. 1995; A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. Journal of Virology 69:4373–4380
    [Google Scholar]
  27. Lobigs M. 1993; Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proceedings of the National Academy of Sciences, USA 90:6218–6222
    [Google Scholar]
  28. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Hostomska Z. 1996; The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331–342
    [Google Scholar]
  29. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Margosiak S., Dagostino E., Hostomska Z. 1998; The conformation of hepatitis C virus NS3 proteinase with and without NS4A: a structural basis for the activation of the enzyme by its cofactor. Clinical and Diagnostic Virology 10:151–156
    [Google Scholar]
  30. Lüthy R., Bowie J. U., Eisenberg D. 1992; Assessment of protein models with three-dimensional profiles. Nature 356:83–85
    [Google Scholar]
  31. Mackow E., Makino Y., Zhao B. T., Zhang Y. M., Markoff L., Buckler-White A., Guiler M., Chanock R., Lai C.-J. 1987; The nucleotide sequence of dengue type 4 virus: analysis of genes coding for nonstructural proteins. Virology 159:217–228
    [Google Scholar]
  32. Nowak T., Farber P. M., Wengler G., Wengler G. 1989; Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169:365–376
    [Google Scholar]
  33. Osatomi K., Sumiyoshi H. 1990; Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176:643–647
    [Google Scholar]
  34. Parton R. G. 1996; Caveolae and caveolins. Current Opinion in Cell Biology 8:542–548
    [Google Scholar]
  35. Perona J. J., Craik C. S. 1995; Structural basis ofsubstrate specificity in the serine proteases. Protein Science 4:337–360
    [Google Scholar]
  36. Preugschat F., Yao C. W., Strauss J.-H. 1990; In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3,. Journal of Virology 64:4364–4374
    [Google Scholar]
  37. Preugschat F., Lenches E. M., Strauss J. H. 1991; Flavivirus enzyme-substrate interactions studied with chimeric proteinases : identification of an intragenic locus important for substrate recognition. Journal of Virology 65:4749–4758
    [Google Scholar]
  38. Reid R. C., Fairlie D. P. 1997; Mimicking extended conformations of protease substrates: designing cyclic peptidomimetics to inhibit HIV-1 protease. In Advances in Amino Acid Mimetics and Peptidomimetics pp 77–107 Edited by Abell A. London: JAI Press;
    [Google Scholar]
  39. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus : implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  40. Rice C. M., Aebersold R., Teplow D. B., Pata J., Bell J. R., Vorndam A. V., Trent D. W., Brandriss M. W., Schlesinger J. J., Strauss J. H. 1986; Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses. Virology 151:1–9
    [Google Scholar]
  41. Rost B., Casadio R., Fariselli P., Sander C. 1995; Transmembrane helices predicted at 95% accuracy. Protein Science 4:521–533
    [Google Scholar]
  42. Ryan M. D., Monaghan S., Flint M. 1998; Virus-encoded proteinases of the Flaviviridae . Journal of General Virology 79:947–959
    [Google Scholar]
  43. Speight G., Coia G., Parker M. D., Westaway E. G. 1988; Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Journal of General Virology 69:23–34
    [Google Scholar]
  44. Stadler K., Allison L. S., Schalich J., Heinz F. X. 1997; Proteolytic activation of tick-borne encephalitis virus by furin. Journal of Virology 71:8475–8481
    [Google Scholar]
  45. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarishi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510
    [Google Scholar]
  46. Tanji Y., Hijikata M., Satoh S., Kaneko T., Shimotohno K. 1995; Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. Journal of Virology 69:1575–1581
    [Google Scholar]
  47. Teo K. F., Wright P. J. 1997; Internal proteolysis of the NS3 protein specified by dengue virus 2. Journal of General Virology 78:337–341
    [Google Scholar]
  48. Valle R. P. C., Falgout B. 1998; Mutagenesis of the NS3 protease of dengue virus type 2. Journal of Virology 72:624–632
    [Google Scholar]
  49. Wengler G., Czaya G., Farber P. M., Hegemann J. H. 1991; In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. Journal of General Virology 72:851–858
    [Google Scholar]
  50. Westaway E. G., Mackenzie J. M., Kenney M. T., Jones M. K., Khromykh A. A. 1997; Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. Journal of Virology 71:6650–6661
    [Google Scholar]
  51. World Health Organization 1996 Dengue and Dengue Haemorrhagic Fever. Report N117 Geneva: World Health Organization;
    [Google Scholar]
  52. Yan Y., Li Y., Munshi S., Sardana V., Cole J. L., Sardana M., Steinkuehler C., Tomei L., De Francesco R., Kuo L. C., Chen Z. 1998; Compl ex of NS3 protease and NS4a peptide of BK strain hepatitis C virus: a 2.2 Å resolution structure in a hexagonal crystal form. Protein Science 7:837–847
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-5-1167
Loading
/content/journal/jgv/10.1099/0022-1317-80-5-1167
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error