1887

Abstract

Poxviruses encode a broad range of proteins that interfere with host immune functions such as soluble versions of cytokine receptors. Soluble virus tumour necrosis factor receptors (vTNFRs) were described originally in myxoma and Shope fibroma viruses. Cowpox virus (CPV) encodes three vTNFRs (CrmB, CrmC and CrmD). The genes equivalent to CrmB and CrmC in vaccinia virus (VV) Copenhagen are mutated and are named B28R/C22L and A53R, respectively. CrmD was identified recently in CPV and ectromelia virus but the gene is absent in VV Copenhagen. We have tested for expression of soluble binding activity for human TNF in cultures infected with 18 orthopoxviruses and have found that TNFRs are mostly absent but are produced by VV strains Lister, USSR and Evans, by the CPV elephantpox and by camelpox virus. Interestingly, we also found TNFR activity on the surface of cells infected with VV Lister, USSR and Evans. Sequence analysis of the relevant regions in VV Lister identified an intact A53R gene and an inactive B28R gene. Expression of VV Lister A53R in baculovirus and VV Western Reserve demonstrated that gene A53R encodes an active soluble vTNFR of 22 kDa. Expression and characterization of recombinant vTNFRs from VV Lister (A53R) and CPV (CrmB and CrmC) showed a similar binding specificity, with each receptor binding TNF from man, mouse and rat, but not human lymphotoxin-alpha. Lastly, the VV Lister and CPV vTNFRs bind human TNF with high affinity and prevent the binding of TNF to cellular receptors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-4-949
1999-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/4/0800949a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-4-949&mimeType=html&fmt=ahah

References

  1. Aguado B., Selmes I. P., Smith G. L. 1992; Nucleotide sequence of 21′8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. Journal of General Virology 73:2887–2902
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1993; Comment on the paper by Shchelkunov et al. (1993). FEBS Letters 319:80–83 Two genes encoding poxvirus cytokine receptors are disrupted or deleted in variola virus. FEBS Letters 335, 136–137
    [Google Scholar]
  4. Alcamí A., Smith G. L. 1995a; Interleukin-1 receptors encoded by poxviruses. In Viroceptors, Virokines and Related Immune Modulators Encoded by DNA Viruses pp 17–27 Edited by McFadden G. Austin: R. G. Landes;
    [Google Scholar]
  5. Alcamí A., Smith G. L. 1995b; Vaccinia, cowpox and camelpox viruses encode soluble interferon–y receptors with novel broad species specificity. Journal of Virology 69:4633–4639
    [Google Scholar]
  6. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. Journal of Immunology 160:624–633
    [Google Scholar]
  7. Beck G., Habicht G. S. 1991; Primitive cytokines: harbingers of vertebrate defense. Immunology Today 12:180–183
    [Google Scholar]
  8. Beutler B. 1992 Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine New York: Raven Press;
    [Google Scholar]
  9. Blanchard T. J., Alcamí A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. Journal of General Virology 79:1159–1167
    [Google Scholar]
  10. Bonfield J. K., Smith K. F., Staden R. 1995; A new DNA sequence assembly program. Nucleic Acids Research 23:4992–4999
    [Google Scholar]
  11. Browning J. L., Ngam-ek A., Lawton P., De Marinis J., Tizard R., Chow E. P., Hession C., O’Brine-Greco B., Foley S. F., Ware C. F. 1993; Lymphotoxin β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72:847–856
    [Google Scholar]
  12. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. L. 1995; Vaccinia virus B18R gene encodes a type I interferonbinding protein that blocks interferon α transmembrane signaling. Journal of Biological Chemistry 270:15974–15978
    [Google Scholar]
  13. Crowe P. D., VanArsdale T. L., Walter B. N., Ware C. F., Hession C., Ehrenfels B., Browning J. L., Din W. S., Goodwin R. G., Smith C. A. 1994; A lymphotoxin-β-specific receptor. Science 264:707–710
    [Google Scholar]
  14. Davison A. J., Moss B. 1990; New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Research 18:4285–4286
    [Google Scholar]
  15. Genetics Computer Group 1994; Program Manual for the Wisconsin Package, version 8.1. Wisconsin, USA:
    [Google Scholar]
  16. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  17. Graham K. A., Lalani A. S., Macen J. L., Ness T. L., Barry M., Liu L., Lucas A., Clark-Lewis I., Moyer R. W., McFadden G. 1997; The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229:12–24
    [Google Scholar]
  18. Howard S. T., Chan Y. S., Smith G. L. 1991; Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumour necrosis factor receptor family. Virology 180:633–647
    [Google Scholar]
  19. Hu F., Smith C. A., Pickup D. J. 1994; Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. Virology 204:343–356
    [Google Scholar]
  20. Kent R. K. 1988 Isolation and analysis of the vaccinia virus p4b gene promoter PhD thesis University of Cambridge, UK:
    [Google Scholar]
  21. Livingstone C., Jones I. 1989; Baculovirus expression vectors with single strand capability. Nucleic Acids Research 17:2366
    [Google Scholar]
  22. Loetscher H., Gentz R., Zulauf M., Lustig A., Tabuchi H., Schlaeger E. J., Brockhaus M., Gallati H., Manneberg M., Lesslauer W. 1991; Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. Journal of Biological Chemistry 266:18324–18329
    [Google Scholar]
  23. Loparev V. N., Parsons J. M., Knight J. C., Panus J. F., Ray C. A., Buller R. M. L., Pickup D. J., Esposito J. J. 1998; A third distinct tumor necrosis factor receptor of orthopoxviruses. Proceedings of the National Academy of Sciences USA 95:3786–3791
    [Google Scholar]
  24. McFadden G., Barry M. 1998; How poxviruses oppose apoptosis. Seminars in Virology 8:429–442
    [Google Scholar]
  25. Massung R. F., Liu L., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201:215–240
    [Google Scholar]
  26. Munson P. J., Rodbard D. 1980; LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Analytical Biochemistry 107:220–239
    [Google Scholar]
  27. Peppel K., Crawford D., Beutler B. 1991; A tumor necrosis factor (TNF) receptor–IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. Journal of Experimental Medicine 174:1483–1489
    [Google Scholar]
  28. Schreiber M., McFadden G. 1994; The myxoma virus TNF-receptor homologue (T2) inhibits tumor necrosis factor-alpha in a species-specific fashion. Virology 204:692–705
    [Google Scholar]
  29. Schreiber M., Rajarathnam K., McFadden G. 1996; Myxoma virus T2 protein, a tumor necrosis factor (TNF) receptor homolog, is secreted as a monomer and dimer that each bind rabbit TNFα, but the dimer is a more potent TNF inhibitor. Journal of Biological Chemistry 271:13333–13341
    [Google Scholar]
  30. Shchelkunov S. N., Blinov V. M., Sandakhchiev L. S. 1993; Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms. FEBS Letters 319:80–83
    [Google Scholar]
  31. Shchelkunov S. N., Safronov P. F., Totmenin A. V., Petrov N. A., Ryazankina O. I., Gutorov V. V., Kotwal G. J. 1998; The genome sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs of immunomodulatory and host range proteins. Virology 243:432–460
    [Google Scholar]
  32. Smith G. L. 1993; Expression of genes by vaccinia virus vectors. In Molecular Virology A Practical Approach pp 257–283 Edited by Davison A. J., Elliott R. Oxford: Oxford University Press;
    [Google Scholar]
  33. Smith C. A., Davis T., Wignall J. M., Din W. S., Farrah T., Upton C., McFadden G., Goodwin R. G. 1991; T2 open reading frame from Shope fibroma virus encodes a soluble form of the TNF receptor. Biochemical and Biophysical Research Communications 176:335–342
    [Google Scholar]
  34. Smith C. A., Hu F. Q., Smith T. D., Richards C. L., Smolak P., Goodwin R. G., Pickup D. J. 1996; Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 223:132–147
    [Google Scholar]
  35. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcamí A. 1997; Vaccinia virus immune evasion. Immunological Reviews 159:137–154
    [Google Scholar]
  36. Symons J. A., Alcamí A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560
    [Google Scholar]
  37. Tidona C. A., Darai G. 1997; The complete DNA sequence of lymphocystis disease virus. Virology 230:207–216
    [Google Scholar]
  38. Upton C., Macen J. L., Schreiber M., McFadden G. 1991; Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology 184370–382
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-4-949
Loading
/content/journal/jgv/10.1099/0022-1317-80-4-949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error