Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. Free

Abstract

The outer capsid spike protein VP4 is the main rotavirus cell attachment protein, but the cellular receptor used by rotavirus to establish a productive infection remains unknown. Sialic acid (SA) residues on the cell surface have been shown to be required for efficient binding and infectivity of animal rotaviruses (ARVs), but not of human rotaviruses (HRVs). Since the SA dependence of only a limited number of strains has been tested to date, in this study a larger number of strains were tested to further investigate the involvement of SA in rotavirus infectivity. Following treatment of African green monkey kidney cell (MA104) monolayers with neuraminidase, productive infection of rotavirus was measured by immunofluorescence. The infectivity of all 14 HRVs tested was SA-independent. Ten of 15 ARVs tested were SA-independent, while only five were SA-dependent. These results indicate that most ARVs, like HRVs, infect permissive cells in an SA-independent manner, probably by a common cellular receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-4-943
1999-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/4/0800943a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-4-943&mimeType=html&fmt=ahah

References

  1. Arias C. F., Romero P., Alvarez V., López S. 1996; Trypsin activation pathway of rotavirus infectivity. Journal of Virology 70:5832–5839
    [Google Scholar]
  2. Bastardo J. W., Holmes I. A. 1980; Attachment of SA-11 rotavirus to erythrocyte receptors. Infection and Immunity 29:1134–1140
    [Google Scholar]
  3. Blick T. J., Tion T., Sahasrabudhe A., Varhese J. N., Colman P. M., Hart J., Bethell R. C., McKimm-Breschkin J. L. 1995; Generation and characterization of an influenza virus neuraminidase variant with decreased sensitivity to the neuraminidase-specific inhibitor 4-uanidino-Neu5Ac2en. Virology 214:475–484
    [Google Scholar]
  4. Bridger J. C., Tauscher I., Dessgelberger U. 1998; Viral determinants of rotavirus pathoenicity in pis: evidence that the fourth gene of a porcine rotavirus confers diarrhea in the homoloous host. Journal of Virology 72:6929–6931
    [Google Scholar]
  5. Burke B., McCrae M. A., Dessgelberger U. 1994; Sequence analysis of two porcine rotaviruses differin in growth in vitro and in pathoenicity: distinct VP4 sequences and conservation of NS53, VP6 and VP7 genes. Journal of general Virology 75:2205–2212
    [Google Scholar]
  6. Ciarlet M., Hidalgo M., Gorzilia M., Liprandi F. 1994; Characterization of neutralization epitopes on the VP7 surface protein of serotype 11 porcine rotaviruses. Journal of general Virology 75:1867–1873
    [Google Scholar]
  7. Coulson B. S., Londrian S. L., Lee D. J. 1997; Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proceedings of the National Academy of Sciences, USA 94:5389–5394
    [Google Scholar]
  8. Crawford S. E., Labbe M., Cohen J., Burrohs M. H., Zhou J.-Y., Estes M. K. 1994; Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. Journal of Virology 68:5945–5952
    [Google Scholar]
  9. Espejo R. T., Lopez S., Arias C. F. 1981; Structural polypeptides of simian rotavirus SA-11 and the effect of trypsin. Journal of Virology 37:156–160
    [Google Scholar]
  10. Estes M. K. 1996; Rotaviruses and their replication. In Fields Virology 3rd edition pp 1657–1708 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  11. Estes M. K., Graham D. Y., Mason B. B. 1981; Proteolytic enhancement of rotavirus infectivity: molecular mechanism. Journal of Virology 37:156–160
    [Google Scholar]
  12. Fiore L. H., Greenberg H. B., Mackow E. R. 1991; The VP8 fragment of VP4 is the rhesus rotavirus hemalutining. Virology 181:553–563
    [Google Scholar]
  13. Fuentes-Pananá E. M., Lopez S., Gorzilia M., Arias C. F. 1995; Mapping the hemagglutination domain of rotavirus. Journal of Virology 69:2629–2632
    [Google Scholar]
  14. Fukudome K., Yoshie O., Konno T. 1989; Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology 172:196–205
    [Google Scholar]
  15. Greenberg H. B., Flores J., Kalica A. R., Wyatt R., Jones R. 1983; encoding assignments for growth restriction, neutralization and subgroup specificities of the W and DS-1 strains of human rotavirus. Journal of general Virology 64:313–320
    [Google Scholar]
  16. Iša P., López S., Segovia L., Arias C. F. 1997; Functional and structural analysis of the sialic acid-binding domain of rotavirus. Journal of Virology 71:6749–6756
    [Google Scholar]
  17. Kalica A. R., Flores J., Greenberg H. B. 1983; Identification of the rotaviral gene that codes for hemagglutination and protease-enhanced plaque formation. Virology 125:194–205
    [Google Scholar]
  18. Keljo D. J., Smith A. K. 1988; Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. Journal of Pediatric gastroenterology and Nutrition 7:249–256
    [Google Scholar]
  19. Liprandi F., Moros Z., Gerder M., Ludert J. E., Pujol F. H., Ruiz M.-C., Michelangeli F., Charpilienne A., Cohen J. 1997; Productive penetration of rotavirus in cultured cells induces co-entry of the translation inhibitor α-sarcin. Virology 237:430–438
    [Google Scholar]
  20. Ludert J. E., Fen N., Yu J. H., Broome R. L., Hoshino Y., Greenberg H. B. 1996; Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo . Journal of Virology 70:487–493
    [Google Scholar]
  21. Ludert J. E., Mason B. B., Anel J., Tan B., Hoshino Y., Fen N., Vo P. T., Mackow E. M., Rueri F. M., Greenberg H. B. 1998; Identification of mutations in the rotavirus protein VP4 that alter sialic-acid-dependent infection. Journal of general Virology 79:725–729
    [Google Scholar]
  22. Mackow E. R., Shaw R. D., Matsui S. M., Vo P. T., Dan M. N., Greenberg H. B. 1988; The rhesus rotavirus gene encodin protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proceedins of the National Academy of Sciences, USA 85:645–649
    [Google Scholar]
  23. Méndez E., Arias C. F., López S. 1993; Binding to sialic acid is not an essential step for the entry of animal rotavirus to epithelial cells in culture. Journal of Virology 67:5253–5259
    [Google Scholar]
  24. Méndez E., Arias C. F., López S. 1996; Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. Journal of Virology 70:1218–1222
    [Google Scholar]
  25. Méndez E., Romero P., Arias C. F., López S. 1998; Rotaviruses isolated from different species interact with a common cellular molecule during virus entry. 17th Annual Meeting of the American Society for Virology University of British Columbia; Vancouver, Canada: Abstract W53–2
    [Google Scholar]
  26. Offit P. A., Blavat G., Greenberg H. B., Clark H. F. 1986; Molecular basis of rotavirus virulence: role of gene segment 4. Journal of Virology 57:46–49
    [Google Scholar]
  27. Rolsma M. D., Gelberg H. B., Kuhlenschmidt M. S. 1994; Assay for evaluation of rotavirus–cell interactions: identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. Journal of Virology 68:258–268
    [Google Scholar]
  28. Sabara M., Ready K. F., Frenchik P. J., Babiuk L. A. 1985; Preliminary characterization of an epitope involved in neutralization and cell attachment that is located on the major bovine rotavirus glycoprotein. Journal of Virology 53:58–66
    [Google Scholar]
  29. Superti F., Donelli G. 1991; anliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. Journal of general Virology 72:2467–2474
    [Google Scholar]
  30. Tauscher G. I., Desselberger U. 1997; Viral determinants of rotavirus pathogenicity in pigs: production of reassortants by asynchronous coinfection. Journal of Virology 71:853–857
    [Google Scholar]
  31. Yolken R. H., Willoughby R., Wee S. B., Miskuff R., Vonderfecht S. 1987; Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses. Journal of Clinical Investigation 79:148–154
    [Google Scholar]
  32. Zhou Y.-J., Burns J. W., Morita Y., Tanaka T., Estes M. K. 1994; Localization of rotavirus VP4 neutralization epitopes involved in antibody-induced conformational changes of virus structure. Journal of Virology 683955–3964
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-4-943
Loading
/content/journal/jgv/10.1099/0022-1317-80-4-943
Loading

Data & Media loading...

Most cited Most Cited RSS feed