1887

Abstract

Application of a highly sensitive PCR-based reverse transcriptase (RT) assay to the analysis of the infection of CD4+ cell lines with human immunodeficiency virus type 1 (HIV-1) demonstrated that virus production can be detected as early as 24 h after infection. Most of the signal at 24 h was due to virus production, as it could be substantially reduced by prior treatment with the RT inhibitor zidovudine. Virus production at 24 and 48 h was unaffected by the protease inhibitor indinavir. Infection of unstimulated peripheral blood mononuclear cells (PBMC) with a macrophage-tropic HIV-1 isolate yielded increasing virus production for 2-3 weeks, while infection with a T-cell line-tropic isolate yielded only low and sporadic virus production. Productive infection of unstimulated PBMC by the macrophage-tropic virus required functional Gag matrix and Vpr proteins; therefore, the monocyte-derived macrophage is probably the virus-producing cell in these cultures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-4-857
1999-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/4/0800857a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-4-857&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. 1996; CC CKR5: a RANTES, MIP- 1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958
    [Google Scholar]
  3. Bukrinsky M. I., Stanwick T. L., Dempsey M. P., Stevenson M. 1991; Quiescent T lymphocytes as an inducible virus reservoir in HIV- 1 infection. Science 254:423–427
    [Google Scholar]
  4. Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. 1993; A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669
    [Google Scholar]
  5. Connor R. I., Chen B. K., Choe S., Landau N. R. 1995; Vpr is required for efficient replication of human immunodeficiency virus type- 1 in mononuclear phagocytes. Virology 206:935–944
    [Google Scholar]
  6. Freed E. O., Martin M. A. 1994; HIV-1 infection of non-dividing cells. Nature 369:107–108
    [Google Scholar]
  7. Freed E. O., Englund G., Martin M. A. 1995; Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. Journal of Virology 69:3949–3954
    [Google Scholar]
  8. Heinzinger N. K., Bukrinsky M. I., Haggerty S. A., Ragland A. M., Kewalramani V., Lee M. A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. 1994; The Vpr protein ofhuman immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proceedings of the National Academy of Sciences, USA 91:7311–7315
    [Google Scholar]
  9. Heneine W., Yamamoto S., Switzer W. M., Spira T. J., Folks T. M. 1995; Detection of reverse transcriptase by a highly sensitive assay in sera from persons infected with human immunodeficiency virus type 1. Journal of Infectious Diseases 171:1210–1216
    [Google Scholar]
  10. Lusso P., Cocchi F., Balotta C., Markham P. D., Louie A., Farci P., Pal R., Gallo R. C., Reitz M. S. Jr 1995; Growth of macrophage- tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. Journal of Virology 69:3712–3720
    [Google Scholar]
  11. Maudru T., Peden K. 1997; Elimination of background signals in a modified polymerase chain reaction-based reverse transcriptase assay. Journal of Virological Methods 66:247–261
    [Google Scholar]
  12. Moore J. P. 1997; Coreceptors: implications for HIV pathogenesis and therapy. Science 276:51–52
    [Google Scholar]
  13. Peden K. W. C., Martin M. A. 1995; Virological and molecular genetic techniques for studies of established HIV isolates. In HIV: A Practical Approach. Volume 1 Virology and Immunology pp 21–45 Edited by Karn J. Oxford: IRL Press;
    [Google Scholar]
  14. Peden K., Emerman M., Montagnier L. 1991; Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI′ HIV-1MAL′ and HIV-1ELI . Virology 185:661–672
    [Google Scholar]
  15. Pyra H., Böni J., Schupbach J. 1994; Ultrasensitive retrovirus detection by a reverse transcriptase assay based on product enhancement. Proceedings of the National Academy of Sciences, USA 91:1544–1548
    [Google Scholar]
  16. Salter R. D., Howell D. N., Cresswell P. 1985; Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immuno- genetics 21:235–246
    [Google Scholar]
  17. Silver J., Maudru T., Fujita K., Repaske R. 1993; An RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucleic Acids Research 21:3593–3594
    [Google Scholar]
  18. Sonza S., Maerz A., Deacon N., Meanger J., Mills J., Crowe S. 1996; Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. Journal of Virology 70:3863–3869
    [Google Scholar]
  19. Theodore T. S., Englund G., Buckler-White A., Buckler C. E., Martin M. A., Peden K. W. 1996; Construction and characterization of a stable full-length macrophage-tropic HIV type 1 molecular clone that directs the production of high titers of progeny virions. AIDS Research and Human Retroviruses 12:191–194
    [Google Scholar]
  20. von Schwedler U., Kornbluth R. S., Trono D. 1994; The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proceedings of the National Academy of Sciences, USA 91:6992–6996
    [Google Scholar]
  21. Weiss A., Wiskocil R. L., Stobo J. D. 1984; The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. Journal of Immunology 133:123–128
    [Google Scholar]
  22. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. 1990; HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61213–222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-4-857
Loading
/content/journal/jgv/10.1099/0022-1317-80-4-857
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error