1887

Abstract

Tomato ringspot nepovirus (TomRSV) RNA-1 encodes a putative NTP-binding protein (NTB), a putative viral genome-linked protein (VPg), a putative RNA-dependent RNA polymerase (Pol) and a serine-like protease (Pro), which have been suggested to be involved in viral RNA replication. Proteolytic processing of protease precursors containing these proteins was studied in Escherichia coli and in vitro. The TomRSV protease could cleave the precursor proteins and release the predicted mature proteins or intermediate precursors. Although processing was detected at all three predicted cleavage sites (NTB-VPg, VPg-Pro and Pro-Pol), processing at the VPg-Pro cleavage site was inefficient, resulting in accumulation of the VPg-Pro intermediate precursor in E. coli and in vitro. In addition, the presence of the VPg sequence in the precursor resulted in increased cleavage at the Pro-Pol cleavage site in E. coli and in vitro. Direct N-terminal sequencing of the genomic RNA-linked VPg, of the mature protease purified from E. coli extracts and of radiolabelled mature polymerase purified from in vitro translation products revealed the sequences of the NTB-VPg, VPg-Pro and Pro-Pol dipeptide cleavage sites to be Q/S, Q/G and Q/S, respectively. In vitro processing at the NTB-VPg and Pro-Pol cleavage sites was not detected upon mutation or deletion of the conserved glutamine at the -1 position of the cleavage site. These results are discussed in light of the cleavage site specificity of the TomRSV protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-799
1999-03-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800799a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-799&mimeType=html&fmt=ahah

References

  1. Allaire M., Chernia M., Malcolm B. A., James M. N. G. 1994; Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76
    [Google Scholar]
  2. Baum E. Z., Bebernitz G. A., Palant O., Mueller T., Plotch S. J. 1991; Purification, properties and mutagenesis of poliovirus 3C protease. Virology 185:140–150
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, USA 85:7872–7876
    [Google Scholar]
  4. Blair W. S., Semler B. L. 1991; Role for the P4 amino acid residue in substrate utilization by the poliovirus 3CD protease. Journal of Virology 65:6111–6123
    [Google Scholar]
  5. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989; A second proteinase encoded by a plant potyvirus genome. EMBO Journal 8:365–370
    [Google Scholar]
  6. Carrington J. C., Freed D. D., Leinicke A. J. 1991; Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3:953–962
    [Google Scholar]
  7. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL nic-cloning vector. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  8. Clark M. F., Adams A. N. 1977; Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34:475–483
    [Google Scholar]
  9. Demangeat G., Hemmer O., Reinbolt J., Mayo M. A., Fritsch C. 1992; Virus–specific proteins in cells infected with tomato black ring nepovirus: evidence for proteolytic processing in vivo. Journal of General Virology 73:1609–1614
    [Google Scholar]
  10. Dessens J. T., Lomonossoff G. P. 1991; Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184:738–746
    [Google Scholar]
  11. Dessens J. T., Lomonossoff G. P. 1992; Sequence upstream of the 24K protease enhances cleavage of the cowpea mosaic virus B RNA-encoded polyprotein at the junction between the 24K and 87K proteins. Virology 189:225–232
    [Google Scholar]
  12. Dougherty W. G., Parks T. D. 1991; Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183:449–456
    [Google Scholar]
  13. Dougherty W. G., Semler B. L. 1993; Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57:781–822
    [Google Scholar]
  14. Dougherty W. G., Carrington J. C., Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal 7:1281–1287
    [Google Scholar]
  15. Dougherty W. G., Parks T. D., Cary S. M., Bazan J. F., Fletterick R. J. 1989; Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310
    [Google Scholar]
  16. Garcia J. A., Martin M. T., Cervera M. T., Riechmann J. L. 1992; Proteolytic processing of the plum pox potyvirus polyprotein by the NIa protease at a novel cleavage site. Virology 188:697–703
    [Google Scholar]
  17. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine protease. A distinct protein superfamily with a common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  18. Hämmerle T., Hellen C. U. T., Wimmer E. 1991; Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C protease. Journal of Biological Chemistry 266:5412–5416
    [Google Scholar]
  19. Hans F., Sanfacon H. 1995; Tomato ringspot nepovirus protease: characterization and cleavage site specificity. Journal of General Virology 76:917–927
    [Google Scholar]
  20. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual pp. 62 196–281 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Hellen C. U. T., Krausslich H., Wimmer E. 1989; Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28:9881–9890
    [Google Scholar]
  22. Hemmer O., Greif C., Dufourcq P., Reinbolt J., Fritsch C. 1995; Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein. Virology 205:362–371
    [Google Scholar]
  23. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, USA 78:3824–3828
    [Google Scholar]
  24. Ishihama A., Barbier P. 1994; Molecular anatomy of viral RNA-directed RNA polymerase. Archives of Virology 134:235–258
    [Google Scholar]
  25. Ivanoff L. A., Towatari T., Ray J., Korant B. D., Petteway S. R. 1986; Expression and site-specific mutagenesis of the poliovirus 3C protease expressed in Escherichia coli. Proceedings of the National Academy of Sciences, USA 85:5392–5396
    [Google Scholar]
  26. Jore J., De Geus B., Jackson R. J., Pouwels P. H., Enger-Valk B. E. 1988; Poliovirus protein 3CD is the active protease for processing of the precursor protein Pl in vitro. Journal of General Virology 69:1627–1636
    [Google Scholar]
  27. Kean K. M., Tetrina N. L., Marc D., Girad M. 1991; Analysis of putative active site residues of the poliovirus 3C protease. Virology 163:330–340
    [Google Scholar]
  28. Kunkel T. A. 1985; Rapid and efficient site specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  30. Laliberté J.-F., Nicolas O., Chatel H., Lazure C., Morosoli R. 1992; Release of a 22-kDa protein derived from the amino-terminal domain of the 49-kDa NIa of turnip mosaic potyvirus in Escherichia coli. Virology 190:510–514
    [Google Scholar]
  31. Margis R., Pinck L. 1992; Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24 kDa protease. Virology 190:884–888
    [Google Scholar]
  32. Margis R., Viry M., Pinck M., Bardonnet N., Pinck L. 1994; Differential proteolytic activities of precursor and mature forms of the 24K protease of grapevine fanleaf nepovirus. Virology 200:79–86
    [Google Scholar]
  33. Matthews D., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L., Worland S. 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771
    [Google Scholar]
  34. Mayo M. A., Robinson D. J. 1996; Nepoviruses: molecular biology and replication. In The Plant Viruses pp 139–185 Edited by Harrison B. D., Murant A. F. New York & London: Plenum Press;
    [Google Scholar]
  35. Nicklin M. J. H., Toyoda H., Murray M. G., Wimmer E. 1986; Proteolytic processing in the replication of polio and related viruses. Bio/Technology 4:36–42
    [Google Scholar]
  36. Nienaber V. L., Brutum K., Birktoft J. J. 1993; A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Biochemistry 32:11470–11475
    [Google Scholar]
  37. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annual Review of Microbiology 44:603–623
    [Google Scholar]
  38. Parks T. D., Howard E. D., Wolpert T. J., Arp D. J., Dougherty W. G. 1995; Expression and purification of a recombinant tobacco etch virus NIa protease: biochemical analysis of the full-length and a naturally occurring truncated protease form. Virology 210:194–201
    [Google Scholar]
  39. Peters S. A., Voorhorst W. G. B., Wery J., Wellink J., Van Kammen A. 1992a; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191:81–89
    [Google Scholar]
  40. Peters S. A., Voorhorst W. G. B., Wellink J., Van Kammen A. 1992b; Processing of VPg–containing polyproteins encoded by the B-RNA from cowpea mosaic virus. Virology 191:90–97
    [Google Scholar]
  41. Peters S. A., Mesnard J. M., Kooter I. M., Verver J., Wellink J., Van Kammen A. 1995; The cowpea mosaic virus RNA 1-encoded 112 kDa protein may function as a VPg precursor in vivo . Journal of General Virology 76:1807–1813
    [Google Scholar]
  42. Rott M. E., Gilchrist A., Lee L., Rochon D. 1995; Nucleotide sequence of tomato ringspot virus RNA1. Journal of General Virology 76:465–473
    [Google Scholar]
  43. Sanfaçon H. 1995; Nepovirus. In Pathogenesis and Host Specificity in Plant Disease: Histopathological, Biochemical and Molecular Bases, vol. III, Viruses and Viroids pp 129–141 Edited by Singh R. P., Singh U. S., Kohmoto K. Oxford: Pergamon Press;
    [Google Scholar]
  44. Sanfaqon H., Wieczorek A., Hans F. 1995; Expression of the tomato ringspot nepovirus movement and coat proteins in protoplasts. Journal of General Virology 76:2299–2303
    [Google Scholar]
  45. Spall V. E., Shanks M., Lomonossoff G. P. 1997; Polyprotein processing as a strategy for gene expression in RNA viruses. Seminars in Virology 8:15–23
    [Google Scholar]
  46. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535
    [Google Scholar]
  47. Wellink J., Rezelman G., Goldbach R., Beyreuther K. 1986; Determination of the proteolytic processing sites in the polyprotein encoded by the bottom-component of the cowpea mosaic virus. Journal of Virology 66:1201–1207
    [Google Scholar]
  48. Wieczorek A., Sanfacon H. 1993; Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194:734–742
    [Google Scholar]
  49. Wieczorek A., Sanfacon H. 1995; An improved method for the generation and transfection of protoplasts from Cucumis sativus cotyledons. Plant Cell Reports 14:603–610
    [Google Scholar]
  50. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. L. 1988a; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265–270
    [Google Scholar]
  51. Ypma-Wong M. F., Filman D. J., Hogle J. M., Semler B. L. 1988b; Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at gln-gly pairs. Journal of Biological Chemistry 26317846–17856
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-799
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-799
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error