1887

Abstract

The Tat (trans-activator of transcription) regulatory protein of human immunodeficiency virus (HIV-1) acts by interacting with the TAR RNA domain of nascent viral transcripts and with cellular proteins to increase viral transcription. In Jurkat-derived HCLE-D36 cells, which are stably transfected with the chloramphenicol acetyltransferase (CAT) reporter gene expressed from the TAR-encoding long terminal repeat (LTR) of HIV-1, CAT protein expression is dependent on Tat. The Tat9-K-biotin peptide antagonist of Tat binds specifically to TAR RNA and competes with Tat for binding. In the cellular expression system, Tat9-K-biotin reduces Tat-dependent CAT expression. However, while the Tat antagonist greatly reduces CAT protein production and polysome association of CAT mRNA, it has little effect on CAT mRNA levels, suggesting that the antagonist works at the post-transcriptional level.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-777
1999-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800777a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-777&mimeType=html&fmt=ahah

References

  1. Arrigo S. J., Chen I. S. Y. 1991; Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes & Development 5:808–819
    [Google Scholar]
  2. Berkhout B., Jeang K.-T. 1992; Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. Journal of Virology 66:139–149
    [Google Scholar]
  3. Braddock M., Chambers A., Wilson W., Esnouf M. P., Adams S. E., Kingsman A. J., Kingsman S. M. 1989; HIV-1 TAT ‘activates’ presynthesized RNA in the nucleus. Cell 58:269–279
    [Google Scholar]
  4. Choudhury I., Wang J., Rabson A. B., Stein S., Pooyan S., Stein S., Leibowitz M. J. 1998; Inhibition of HIV-1 replication by a Tat RNA-binding domain peptide analog. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 17:104–111
    [Google Scholar]
  5. Cullen B. R. 1986; Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982
    [Google Scholar]
  6. Cullen B.R. 1992; Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiological Reviews 56:375–394
    [Google Scholar]
  7. D’Agostino D. M., Felber B. K., Harrison J. E., Pavlakis G. N. 1992; The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Molecular and Cellular Biology 12:1375–1386
    [Google Scholar]
  8. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A., Valerio R. 1989; Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proceedings of the NationalAcademy of Sciences, USA 86:6925–6929
    [Google Scholar]
  9. Gaynor R. B. 1995; Regulat ion of HIV-1 gene expression by the transactivator protein Tat. Current Topics in Microbiology and Immunology 193:51–77
    [Google Scholar]
  10. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  11. Hamy F., Felder E. R., Heizmann G., Lazdins J., Aboul-ela F., Varani G., Karn J., Klimkait T. 1997; An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proceedings ofthe National Academy of Sciences, USA 94:3548–3553
    [Google Scholar]
  12. Huang L.-M., Joshi A., Willey R., Orenstein J., Jeang K.-T. 1994; Human immunodeficiency viruses regulated by alternative transactivators: genetic evidence for a novel non-transcriptional function for Tat in virion infectivity. EMBO Journal 13:2886–2896
    [Google Scholar]
  13. Jeang K.-T., Chun R., Lin N. H., Gatignol A., Glabe C. G., Fan H. 1993; In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. Journal of Virology 67:6224–6233
    [Google Scholar]
  14. Jones K. A. 1997; Taking a new TAK on tat transactivation. Genes & Development 11:2593–2599
    [Google Scholar]
  15. Jones K. A., Peterlin B. M. 1994; Control of RNA initiation and elongation at the HIV-1 promoter. Annual Review of Biochemistry 63:717–743
    [Google Scholar]
  16. Kao S.-Y., Calman A. F., Luciw P. A., Peterlin B. M. 1987; Antitermination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493
    [Google Scholar]
  17. Kato H., Sumimoto H., Pognonec P., Chen C.-H., Rosen C. A., Roeder R. G. 1992; HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes & Development 6:655–666
    [Google Scholar]
  18. Katze M. G., DeCorato D., Krug R. M. 1986; Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus or adenovirus. Journal of Virology 60:1027–1039
    [Google Scholar]
  19. Keen N. J., Gait M. J., Karn J. 1996; Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proceedings of the National Academy of Sciences, USA 93:2505–2510
    [Google Scholar]
  20. Keen N. J., Churcher M. J., Karn J. 1997; Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. EMBO Journal 16:5260–5272
    [Google Scholar]
  21. Laspia M. F., Rice A. P., Mathews M. B. 1989; HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292
    [Google Scholar]
  22. Marciniak R. A., Sharp P. A. 1991; HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO Journal 10:4189–4196
    [Google Scholar]
  23. Mavankal G., Ou S. H. I., Oliver H., Sigman D., Gaynor R. B. 1996; Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Proceedings of the National Academy of Sciences, USA 93:2089–2094
    [Google Scholar]
  24. Parada C. A., Roeder R. G. 1996; Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–378
    [Google Scholar]
  25. Rosen C. A., Sodroski J. G., Goh W. C., Dayton A. I., Lippke J., Haseltine W. A. 1986; Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319:555–559
    [Google Scholar]
  26. Roy S., Delling U., Chen C.-H., Rosen C. A., Sonenberg N. 1990; A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes & Development 4:1365–1373
    [Google Scholar]
  27. Selby M. J., Bain E. S., Luciw P. A., Peterlin B. M. 1989; Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes & Development 3:547–558
    [Google Scholar]
  28. Southgate C., Green M. R. 1991; The HIV-1 Tat protein activates transcription from an upstream DNA binding site: implications for Tat function. Genes & Development 5:2496–2507
    [Google Scholar]
  29. Southgate C., Zapp M. L., Green M. R. 1990; Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345:640–642
    [Google Scholar]
  30. Wang J., Huang S.-Y., Choudhury I., Leibowitz M. J., Stein S. 1995; Use ofapolyethylene glycol-peptide conjugate in a competition gel shift assay for screening potential antagonists of HIV-1 Tat protein binding to TAR RNA. Analytical Biochemistry 232:238–242
    [Google Scholar]
  31. Warner J. R., Knopf P. M., Rich A. 1963; A multiple ribosomal structure in protein synthesis. Proceedings of the National Academy of Sciences, USA 49:122–129
    [Google Scholar]
  32. Wu-Baer F., Sigman D., Gaynor R. B. 1995; Specific binding of RNA polymerase II to the human immunodeficiency virus transactivating region RNA is regulated by cellular cofactors and Tat. Proceedings of the National Academy of Sciences, USA 92:7153–7157
    [Google Scholar]
  33. Yang L., Morris G. F., Lockyer J. M., Lu M., Wang Z., Morris C. B. 1997; Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Virology 235:48–64
    [Google Scholar]
  34. Zacharias M., Hagerman P. J. 1995; The bend in RNA created by the trans-activation response element bulge of human immunodeficiency virus is straightened by arginine and by Tat-derived peptide. Proceedings of the National Academy of Sciences, USA 92:6052–6056
    [Google Scholar]
  35. Zhou Q., Sharp P. A. 1995; Novel mechanism and factor for regulation by HIV-1 Tat. EMBO Journal 14321–328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-777
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-777
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error