1887

Abstract

The ectodomain of the paramyxovirus haemagglutinin-neuraminidase (HN) glycoprotein spike can be divided into two regions: a membrane-proximal, stalk-like structure and a terminal globular domain. The latter contains all the antibody recognition sites of the protein, as well as its receptor recognition and neuraminidase (NA) active sites. These two activities of the protein can be separated by monoclonal antibody functional inhibition studies and mutations in the globular domain. Herein, we show that mutation of several conserved residues in the stalk of the Newcastle disease virus HN protein markedly decrease its NA activity without a significant effect on receptor recognition. Thus, mutations in the stalk, distant from the NA active site in the globular domain, can also separate attachment and NA. These results add to an increasing body of evidence that the NA activity of this protein is dependent on an intact stalk structure.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-749
1999-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800749a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-749&mimeType=html&fmt=ahah

References

  1. Buckland R., Wild F. 1989; Leucine zipper motif extends. Nature 338:547
    [Google Scholar]
  2. Blumberg B., Giorgi C., Roux L., Raju R., Dowling P., Chollet A., Kolakofsky D. 1985; Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins. Cell 41:269–278
    [Google Scholar]
  3. Castrucci M. R., Kawaoka Y. 1993; Biologic importance of neuraminidase stalk length in influenza A virus. Journal of Virology 67:759–764
    [Google Scholar]
  4. Chambers P., Pringle C. R., Easton A. J. 1990; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Journal of General Virology 71:3075–3080
    [Google Scholar]
  5. Collins P. L., Mottet G. 1991; Homooligomerization of the hemagglutinin–neuraminidase glycoprotein of human parainfluenza virus type 3 occurs before the acquisition of correct intramolecular disulfide bonds and mature immunoreactivity. Journal of Virology 65:2362–2371
    [Google Scholar]
  6. Colman P. M., Hoyne P. A., Lawrence M. C. 1993; Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. Journal of Virology 67:2972–2980
    [Google Scholar]
  7. Deng R., Wang Z., Glickman R. L., Iorio R. M. 1994; Glycosylation within an antigenic site on the HN glycoprotein of Newcastle disease virus interferes with its role in the promotion of membrane fusion. Virology 204:17–26
    [Google Scholar]
  8. Deng R., Wang Z., Mirza A. M., Iorio R. M. 1995; Localization of a domain on the paramyxovirus attachment protein required for the promotion of cellular fusion by its homologous fusion protein spike. Virology 209:457–469
    [Google Scholar]
  9. Deng R., Mirza A. M., Mahon P. J., Iorio R. M. 1997; Functional chimeric HN glycoproteins derived from Newcastle disease virus and human parainfluenza virus-3. Archives of Virology Supplement 13115–130
    [Google Scholar]
  10. Doms R. W., Lamb R. A., Rose J. K., Helenius A. 1993; Folding and assembly of viral membrane proteins. Virology 193:545–562
    [Google Scholar]
  11. Elango N., Coligan J. E., Jambou R. C., Venkatesan S. 1986; Human parainfluenza type 3 virus hemagglutinin–neuraminidase glycoprotein: nucleotide sequence of mRNA and limited amino acid sequence of CNBr peptides of the purified protein. Journal of Virology 57:481–489
    [Google Scholar]
  12. Els M. C., Air G. M., Murti K. G., Webster R. G., Laver W. G. 1985; An 18 amino acid deletion in an influenza neuraminidase. Virology 142:241–248
    [Google Scholar]
  13. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eucaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  14. Hiebert S. W., Paterson R. G., Lamb R. A. 1985; Hemagglutinin–neuraminidase protein of simian virus 5: nucleotide sequence of the mRNA predicts an N-terminal anchor. Journal of Virology 54:1–6
    [Google Scholar]
  15. Huberman K., Peluso R. W., Moscona A. 1995; Hemagglutinin–neuraminidase of human parainfluenza 3: role of the neuraminidase in the viral life cycle. Virology 214:294–300
    [Google Scholar]
  16. Iorio R. M., Glickman R. L. 1992; Fusion mutants of Newcastle disease virus selected with monoclonal antibodies to the hemagglutinin–neuraminidase. Journal of Virology 66:6626–6633
    [Google Scholar]
  17. Iorio R. M., Glickman R. L., Riel A. M., Sheehan J. P., Bratt M. A. 1989a; Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus: monoclonal antibodies to some sites prevent viral attachment. Virus Research 13:245–262
    [Google Scholar]
  18. Iorio R. M., Syddall R. J., Glickman R. L., Riel A. M., Sheehan J. P., Bratt M. A. 1989b; Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus. Virology 173:196–204
    [Google Scholar]
  19. Iorio R. M., Syddall R. J., Sheehan J. P., Bratt M. A., Glickman R. L., Riel A. M. 1991; Neutralization map of the HN glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. Journal of Virology 65:4999–5006
    [Google Scholar]
  20. Iorio R. M., Glickman R. L., Sheehan J. P. 1992; Inhibition of fusion by neutralizing monoclonal antibodies to the haemagglutinin–neuraminidase glycoprotein of Newcastle disease virus. Journal of General Virology 73:1167–1176
    [Google Scholar]
  21. Landschulz W. H., Johnson P. F., McKnight S. L. 1988; The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764
    [Google Scholar]
  22. Langedijk J. P. M., Daus F. J., Van Oirschot J. 1997; Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71:6155–6167
    [Google Scholar]
  23. McGinnes L. W., Wilde A., Morrison T. G. 1987; Nucleotide sequence of the gene encoding the Newcastle disease virus hemagglutinin–neuraminidase protein and comparisons of paramyxovirus hemagglutinin–neuraminidase protein sequences. Virus Research 7:187–202
    [Google Scholar]
  24. Mahon P. J., Deng R., Mirza A. M., Iorio R. M. 1995; Cooperative neuraminidase activity in a paramyxovirus. Virology 213:241–244
    [Google Scholar]
  25. Markwell M. A. K., Fox C. F. 1980; Protein–protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking. Journal of Virology 33:152–166
    [Google Scholar]
  26. Mirza A. M., Sheehan J. P., Hardy L. W., Glickman R. L., Iorio R. M. 1993; Structure and function of a membrane anchor-less form of the hemagglutinin–neuraminidase glycoprotein of Newcastle disease virus. Journal of Biological Chemistry 268:21425–21431
    [Google Scholar]
  27. Mirza A. M., Deng R., Iorio R. M. 1994; Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin–neuraminidase glycoprotein: effects on antigenic structure and function. Journal of Virology 68:5093–5099
    [Google Scholar]
  28. Morrison T. G., Portner A. 1991; Structure, function and intracellular processing of the glycoproteins of paramyxoviridae. In The Paramyxoviruses pp 347–382 Edited by Kingsbury D. W. New York: Plenum;
    [Google Scholar]
  29. Ng D. T. W., Randall R. E., Lamb R. A. 1989; Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin–neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. Journal of Cell Biology 109:3273–3289
    [Google Scholar]
  30. Scheid A., Choppin P. W. 1973; Isolation and purification of the envelope proteins of Newcastle disease virus. Journal of Virology 11:263–271
    [Google Scholar]
  31. Sergel T., McGinnes L. W., Peeples M. E., Morrison T. G. 1993; The attachment function of the Newcastle disease virus hemagglutinin–neuraminidase protein can be separated from fusion promotion by mutation. Virology 193:717–726
    [Google Scholar]
  32. Takimoto T., Laver W. G., Murti K. G., Portner A. 1992; Crystallization of biologically active hemagglutinin–neuraminidase glycoprotein dimers proteolytically cleaved from human parainfluenza virus type 1. Journal of Virology 66:7597–7600
    [Google Scholar]
  33. Thompson S. D., Portner A. 1988; Localization of functional sites on the hemagglutinin–neuraminidase glycoprotein of Sendai virus by sequence analysis of antigenic and temperature-sensitive mutants. Virology 160:1–8
    [Google Scholar]
  34. Thompson S. D., Laver W. G., Murti K., Portner A. 1987; Isolation of a biologically active soluble form of the hemagglutinin–neuraminidase protein of Sendai virus. Journal of Virology 62:4653–4660
    [Google Scholar]
  35. Varghese J. N., Laver W. G., Colman P. M. 1983; Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303:35–40
    [Google Scholar]
  36. Waxham M. N., Aronowski J. 1988; Identification of amino acids involved in the sialidase activity of the mumps virus hemagglutinin–neuraminidase protein. Virology 167:226–232
    [Google Scholar]
  37. Waxham M. N., Aronowski J., Server A. C., Smith J. A., Wolinsky J. S., Goodman H. M. 1988; Sequence determination of the mumps virus HN gene. Virology 164:318–325
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-749
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error