1887

Abstract

We have previously examined 29 cervical cell isolates for human papillomavirus type 16 (HPV-16) sequence variations in the E6, L2 and L1 coding regions, and the long control region (LCR). Twenty-five of these isolates as well as 23 additional isolates are characterized here as we present the complete E5 coding segment and the E2 hinge region. Eight amino acid variations were observed in the E5 coding segment, 13 were identified in the E2 hinge region and 5 were observed in the overlapping E4 coding segment. These amino acid variations may be relevant to differences in biological functions and may result in altered humoral or cell-mediated immune responses to HPV-16 variants. The characterization of sequence variation within high-risk HPV types might be important in the search for epidemiological correlates of cervical cancer risk. This work complements and extends HPV-16 genome sequence information from specific isolates previously reported by our group.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-595
1999-03-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800595a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-595&mimeType=html&fmt=ahah

References

  1. Bavin P. J., Walker P. G., Emery V. C. 1993; Sequence microheterogeneity in the long control region of clinical isolates of human papillomavirus type 16. Journal of Medical Virology 39:267–272
    [Google Scholar]
  2. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. the International Biological Study of Cervical Cancer Study Group 1995; Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. Journal of the National Cancer Institute 87:796–802
    [Google Scholar]
  3. Chan S.-Y., Ho L., Ong C.-K., Chow V., Drescher B., Durst M., ter Meulen J., Villa L., Luande J., Magaya H. N., Bernard H.-U. 1992; Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its coevolution with humankind. Journal of Virology 66:2057–2066
    [Google Scholar]
  4. Conrad M., Bubb V. J., Schlegel R. 1993; The human papillomavirus type 16 E5 proteins which associate with the 16-kilodalton poreforming protein. Journal of Virology 67:6170–6178
    [Google Scholar]
  5. Cullen A. P., Reid R., Campion M., Lorincz A. T. 1991; Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. Journal of Virology 65:606–612
    [Google Scholar]
  6. de Villiers E.-M. 1994; Human pathogenic papillomavirus types: an update. Current Topics in Microbiology and Immunology 186:1–12
    [Google Scholar]
  7. Doorbar J., Ely S., Sterling J., McLean C., Crawford L. 1991; Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827
    [Google Scholar]
  8. Ellis J. R. M., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S., Stern P. L. 1995; The oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Medicine 1:464–470
    [Google Scholar]
  9. Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissmann L. 1992; Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. Journal of General Virology 73:1829–1832
    [Google Scholar]
  10. Gauthier J.-M., Dillner J., Yaniv M. 1991; Structural analysis of the human papillomavirus type 16-E2 transactivator with antipeptide antibodies reveals a high mobility region linking the transactivation and the DNA-binding domains. Nucleic Acids Research 19:7073–7079
    [Google Scholar]
  11. Goldstein D. J., Finbow M. E., Andresson T., McLean P., Smith K., Bubb V., Schlegel R. 1991; Bovine papillomavirus E5 oncoprotein binds in the 16 k component of vacuolar H(+)-ATPase. Nature 352:347–349
    [Google Scholar]
  12. Halpern A. L., McCance D. J. 1996; Papillomavirus E5 proteins. In Human Papillomaviruses. A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences pp III-81–III-111 Edited by Myers G., Baker C., Wheeler C., Halpern A., Doorbar J. Publication LA-UR 96-3007 Los Alamos, NM: Los Alamos National Laboratory;
    [Google Scholar]
  13. Ham J., Dostatni N., Gauthier J.-M., Yaniv M. 1991; The papillomavirus E2 protein: a factor with many talents. Trends in Biochemical Science 16:440–444
    [Google Scholar]
  14. Hecht J. L., Kadish A. S., Jiang G., Burk R. D. 1995; Genetic characterization ofthe human papillomavirus (HPV) 18 E2 gene in clinical specimens suggests the presence of a subtype with decreased oncogenic potential. International Journal of Cancer 60:369–376
    [Google Scholar]
  15. Ho L., Chan S.-Y., Chow V., Chong T., Tay S.-K., Villa L. L., Bernard H.-U. 1991; Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. Journal of Clinical Microbiology 29:1765–1772
    [Google Scholar]
  16. Ho L., Chan S.-Y., Burk R. D., Das B. C., Fujinaga K., Icenogle J. P., Kahn T., Kiviat N., Lancaster W., Mavromara-Nazos P., Labro-poulou V., Mitrani-Rosenbaum S., Norrild M., Pillai M. R., Stoerker J., Syrjanen K., Syrjanen S., Tay S.-K., Villa L. L., Wheeler C. M., Williamson A.-L., Bernard H.-U. 1993; The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. Journal of Virology 67:6413–6423
    [Google Scholar]
  17. Icenogle J. P., Laga M., Miller D., Tucker R. A., Reeves W. C. 1992; Genotypes and sequence variants of human papillomavirus DNAs from human immunodeficiency virus type 1-infected women with cervical intraepithelial neoplasia. Journal of Infectious Disease 166:1210–1216
    [Google Scholar]
  18. Ku J.-L., Kim W.-H., Park H.-S., Kang S.-B., Park J.-G. 1997; Establishment and characterization of 12 uterine cervical-carcinoma cell lines: common sequence variation in the E7 gene of HPV-16-positive cell lines. International Journal of Cancer 72:313–320
    [Google Scholar]
  19. Lefkowitz E. J., Broker T. R. 1995 Alignments of the Overlapping E4 and E2- Hinge Open Reading Frames and Protein Sequences for Thirty Human and Animal Papillomavirus Genotypes University of Alabama, Birmingham;
    [Google Scholar]
  20. Londesborough P., Ho L., Terry G., Cuzick J., Wheeler C., Singer A. 1996; Human papillomavirus genotype as a predictor of persistence and development of high grade lesions in women with minor cervical abnormalities. International Journal of Cancer 69:364–368
    [Google Scholar]
  21. McBride A., Myers G. 1996; The E2 proteins. In Human Papillomaviruses. A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences pp III-15–II-31 Edited by Myers G., Baker C., Wheeler C., Halpern A., Doorbar J. Publication LA-UR 96-3007 Los Alamos, NM: Los Alamos National Laboratory;
    [Google Scholar]
  22. McBride A. A., Romanczuk H., Howley P. M. 1991; The papilloma-virus E2 regulatory proteins. Journal of Biological Chemistry 266:18411–18414
    [Google Scholar]
  23. Myers G., Bernard H.-U., Delius H., Baker C., Icenogle J., Halpern A., Wheeler C. 1995 Human Papillomaviruses. A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences Publication LA-UR 953675 Los Alamos, NM: Los Alamos National Laboratory;
    [Google Scholar]
  24. Pim D., Collins M., Banks L. 1992; Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7:27–32
    [Google Scholar]
  25. Pushko P., Sasagawa T., Cuzick J., Crawford L. 1994; Sequence variation in the capsid protein genes of human papillomavirus type 16. Journal of General Virology 75:911–916
    [Google Scholar]
  26. Roberts S., Ashmole I., Johnson G. D., Kreider J. W., Gallimore P. H. 1993; Cutaneous and mucosal human papillomavirus E4 proteins form intermediate filament-like structures in epithelial cells. Virology 197:176–187
    [Google Scholar]
  27. Roberts S., Ashmole I., Gibson L. J., Rookes S. M., Barton G. J., Gallimore P. H. 1994; Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. Journal of Virology 68:6432–6445
    [Google Scholar]
  28. Roberts S., Ashmole I., Rookes S. M., Gallimore P. H. 1997; Mutational analysis of the human papillomavirus type 16E1 ^ E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. Journal of Virology 71:3554–3562
    [Google Scholar]
  29. Rogel-Gaillard C., Breiburd F., Orth G. 1992; Human papillomavirus type 1 E4 proteins differing by their N-terminal ends have distinct cellular localizations when transiently expressed in vitro. Journal of Virology 66:816–823
    [Google Scholar]
  30. Schiffman M. H., Bauer H. M., Hoover R. N., Glass A. G., Cadell D. M., Rush B. B., Scott D. R., Sherman M. E., Kurman R. J., Wacholer S., Stanton C. K., Manos M. M. 1993; Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. Journal of the National Cancer Institute 85:958–964
    [Google Scholar]
  31. Smits H. L., Traanberg K. F., Krul M. R. L., Prussia P. R., Kuiken C. L., Jebbink M. F., Kleyne J. A. F. W., van den Berg R. H., Capone B., de Bruyn A., ter Schegget J. 1994; Identification of a unique group of human papillomavirus type 16 sequence variants among clinical isolates from Barbados. Journal of General Virology 75:2457–2462
    [Google Scholar]
  32. Straight S. W., Herman B., McCance D. J. 1995; The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. Journal of Virology 69:3185–3192
    [Google Scholar]
  33. Terry G., Ho L., Cuzick J. 1997; Analysis of E2 amino acid variants of human papillomavirus types 16 and 18 and their associations with lesion grade and HLA DR/DQ type. International Journal of Cancer 73:651–655
    [Google Scholar]
  34. Tornesello M. L., Buonaguro F. M., Meglio A., Buonaguro L., Beth-Giraldo E., Giraldo G. 1997; Sequence variations and viral genomic state of human papillomavirus type 16 in penile carcinomas from Ugandan patients. Journal of General Virology 78:2199–2208
    [Google Scholar]
  35. Vernon S. D., Unger E. R., Miller D. L., Lee D. R., Reeves W. C. 1997; Association of human papillomavirus type 16 integration in the E2 gene with poor disease-free survival from cervical cancer. International Journal of Cancer 74:50–56
    [Google Scholar]
  36. Xi L. F., Koutsky L. A., Galloway D. A., Kuypers J., Hughes J. P., Wheeler C. M., Holmes K. K., Kiviat N. B. 1997; Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. Journal of the National Cancer Institute 89:796–802
    [Google Scholar]
  37. Yamada T., Wheeler C. M., Halpern A. L., Stewart A.-C. M., Hildesheim A., Jenison S. A. 1995; Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. Journal of Virology 69:7743–7753
    [Google Scholar]
  38. Yamada T., Manos M. M., Peto J., Greer C. E., Muñoz N., Bosch F. X., Wheeler C. M. 1997; Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. Journal of Virology 71:2463–2472
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-80-3-595
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-595
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error