1887

Abstract

PCR analysis of the genomes of 18 different African swine fever virus (ASFV) isolates showed that the I14L open reading frame (ORF) was present as either a long form or short form in all of the isolates. Sequencing of the ORF from eight isolates confirmed that both forms of the ORF were well conserved. Antisera raised against the I14L protein identified the long form of the protein as a 21 kDa protein expressed late during ASFV infection. Immunofluorescent analysis of transiently expressed haemagglutinin-tagged forms of the I14L protein showed that the long form of the protein localized predominantly to the nucleus and within the nucleoli. In contrast, although the short form of the protein was also present predominantly in the nucleus, it did not localize to the nucleoli. Deletion of the N-terminal 14 amino acids from the long form of the I14L protein, which includes a high proportion of basic Arg/Lys residues, abolished the specific nucleolar localization of the protein, although the protein was still present in the nucleus. Addition of this 14 amino acid sequence to beta-galactosidase or replacement of the N-terminal 14 amino acids of the I14L short form with those from the long form directed both of these modified proteins to the nucleolus. This indicates that this 14 amino acid sequence contains all the signals required for nucleolar localization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-525
1999-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800525a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-525&mimeType=html&fmt=ahah

References

  1. Adachi Y., Copeland T. D., Hatanaka M., Oroszlan S. 1993; Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. Journal of Biological Chemistry 268:13930–13934
    [Google Scholar]
  2. Boinas F. J. S. 1994 The role of Ornithodoros erraticus in the epidemiology of African swine fever in Portugal PhD thesis University of Reading, UK;
    [Google Scholar]
  3. Brown S. M., Harland J., MacLean A. R., Podlech J., Clements J. B. 1994a; Celltype and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. Journal of General Virology 75:2367–2377
    [Google Scholar]
  4. Brown S. M., MacLean A. R., Aitken J. D., Harland J. 1994b; ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro . Journal of General Virology 75:3679–3686
    [Google Scholar]
  5. Brown S. M., MacLean A. R., McKie E. A., Harland J. 1997; Theherpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. Journal of Virology 71:9442–9449
    [Google Scholar]
  6. Cassady K. A., Gross M., Roizman B. 1998; The second-site mutation in the herpes simplex virus recombinants lacking the γ 134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of elF-2α . Journal of Virology 72:7005–7011
    [Google Scholar]
  7. Chou J., Chen J.-J., Gross M., Roizman B. 1995; Association of a M 90, 000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2α and premature shutoff of protein synthesis after infection with γ 134.5 mutants of herpes simplex virus 1. Proceedings of the National Academy of Sciences, USA 92:10516–10520
    [Google Scholar]
  8. Costa J. V. 1990; African swine fever virus. In Molecular Biology of Iridoviruses pp 247–270 Edited by Darai G. Dordrecht: Kluwer;
    [Google Scholar]
  9. Dang C. V., Lee W. M. F. 1989; Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. Journal of Biological Chemistry 264:18019–18023
    [Google Scholar]
  10. Dixon L. K., Twigg S. R. F., Baylis S. A., Vydelingum S., Bristow C., Hammond J. M., Smith G. L. 1994; Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). Journal of General Virology 75:1655–1684
    [Google Scholar]
  11. Dixon L. K., Rock D. L., Vinuela E. 1995; African swine fever-like viruses. In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 92–94 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  12. Flores-Rozas H., Kelman Z., Dean F. B., Pan Z.-Q., Harper J. W., Elledge S. J., O’Donnell M., Hurwitz J. 1994; Cdk interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalysed by the DNA polymerase S holoenzyme. Proceedings of the National Academy of Sciences, USA 91:8655–8659
    [Google Scholar]
  13. Fornace A. J. Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. 1989; Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Molecular and Cellular Biology 9:4196–4203
    [Google Scholar]
  14. He B., Chou J., Liebermann D. A., Hoffman B., Roizman B. 1996; The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the y(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. Journal of Virology 70:84–90
    [Google Scholar]
  15. He B., Gross M., Roizman B. 1997; The y(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephos-phorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proceedings of the National Academy of Sciences, USA 94:843–848
    [Google Scholar]
  16. He B., Gross M., Roizman B. 1998; The y(1) 34.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. Journal of Biological Chemistry 273:20737–20743
    [Google Scholar]
  17. Henderson J. E., Amizuka N., Warshawsky H., Biasotto D., Lanske B. M. K., Goltzman D., Karaplis A. C. 1995; Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Molecular and Cellular Biology 15:4064–4075
    [Google Scholar]
  18. Kubota S., Duan L., Furuta R. A., Hatanaka M., Pomerantz R. J. 1996; Nuclear preservation and cytoplasmic degradation of human immunodeficiency virus type 1 Rev protein. Journal of Virology 70:1282–1287
    [Google Scholar]
  19. Li R., Waga S., Hannon G. J., Beach D., Stillman B. 1994; Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371:534–537
    [Google Scholar]
  20. Liu J. L., Lee L. F., Ye Y., Qian Z., Kung H.-J. 1997; Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ. Journal of Virology 71:3188–3196
    [Google Scholar]
  21. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. 1990; Sequence of MyD116 cDNA: a novel myeloid differentiation primary response gene induced by IL6. Nucleic Acids Research 18:2823
    [Google Scholar]
  22. MacLean C. A., Rixon F. J., Marsden H. S. 1987; The products of gene Ug11 of herpes simplex virus type 1 are DNA-binding and localize to the nucleoli ofinfected cells. JournalofGeneral Virology 68:1921–1937
    [Google Scholar]
  23. Meier U. T., Blobel G. 1992; Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138
    [Google Scholar]
  24. Okano Y., Steen V. D., Medsger T. A. 1992; Autoantibody to U3 nucleolar ribonucleoprotein (fibrillarin) in patients with systemic sclerosis. Arthritis and Rheumatism 35:95–100
    [Google Scholar]
  25. Roller R., Roizman B. 1992; The herpes simplex virus 1 RNA binding protein U 11 is a virion component and associates with ribosomal 60S subunits. Journal of Virology 66:3624–3632
    [Google Scholar]
  26. Schmidt-Zachmann M. S., Nigg E. A. 1993; Protein localization to the nucleolus: a search for targeting domains in nucleolin. Journal of Cell Science 105:799–806
    [Google Scholar]
  27. Selvakumaran M., Liebermann D., Hoffman-Liebermann B. 1993; Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis. Blood 81:2257–2262
    [Google Scholar]
  28. Siomi H., Shida H., Nam S. H., Nosaka T., Maki M., Hatanaka M. 1988; Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 55:197–209
    [Google Scholar]
  29. Sun H., Jacobs S. C., Smith G. L., Dixon L. K., Parkhouse R. M. E. 1995; African swine fever virus gene j13L encodes a 25-27 kDa virion protein with variable numbers of amino acid repeats. Journal of General Virology 76:1117–1127
    [Google Scholar]
  30. Sussman M. D., Lu Z., Kutish G., Afonso C. L., Roberts P., Rock D. L. 1992; Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence-associatedgene ofherpes simplex virus. JournalofVirology 66:5586–5589
    [Google Scholar]
  31. Sutter G., Ohlmann M., Erfle V. 1995; Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Letters 371:9–12
    [Google Scholar]
  32. Vinuela E. 1985; African swine fever virus. Current Topics in Microbiology and Immunology 116:151–170
    [Google Scholar]
  33. Vydelingum S., Baylis S. A., Bristow C., Smith G. L., Dixon L. K. 1993; Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. Journal of General Virology 74:2125–2130
    [Google Scholar]
  34. Waga S., Hannon G. J., Beach D., Stillman B. 1994; The p21inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578
    [Google Scholar]
  35. Waseem N. H., Lane D. P. 1990; Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. Journal of Cell Science 96:121–129
    [Google Scholar]
  36. Yan C., Melese R. 1993; Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus. Journal of Cell Biology 123:1081–1091
    [Google Scholar]
  37. Yanez R. F., Rodriguez J. M., Nogal M. L., Yuste L., Enriquez C., Rodriguez J. F., Vinuela E. 1995; Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278
    [Google Scholar]
  38. Zhan Q., Lord K. A., Alamo I. Jr, Hollander M. C., Carrier F., Ron D., Kohn K. W., Hoffman B., Liebermann D. A., Fornace A. J. Jr 1994; The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Molecular and Cellular Biology 14:2361–2371
    [Google Scholar]
  39. Zsak L., Lu Z., Kutish G. F., Neilan J. G., Rock D. L. 1996; AnAfrican swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. Journal of Virology 70:8865–8871
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-525
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error