A-type and B-type Epstein-Barr virus differ in their ability to spontaneously enter the lytic cycle Free

Abstract

In this study replication of A-type and B-type Epstein-Barr virus (EBV) strains has been assessed. A-type and B-type type lymphoblastoid cell lines (LCLs) were established by infecting B lymphocytes, isolated from five EBV-seropositive donors, with different A-type and B-type virus isolates. The presence of viral capsid antigens (VCA) in these LCLs was determined by immunofluoresence assay and by immunoblotting. All of the B-type EBV strains were capable of spontaneously generating virus regardless of the origin of the donor cells. In contrast the A-type strains, other than strain IARC-BL36, did not readily produce VCA in any of the different donor lymphocytes used. This study demonstrates another biological difference between the two virus types: their ability to spontaneously enter the lytic cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-2-441
1999-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/2/0800441a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-2-441&mimeType=html&fmt=ahah

References

  1. Adldinger H. K., Delius H., Freese U. K., Clarke J., Bornkamm G. W. 1985; A putative transforming gene of Jijoye virus differs from that of Epstein–Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  2. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181:595–608
    [Google Scholar]
  3. Arrand J. R., Young L. S., Tugwood J. D. 1989; Two families of sequences in the small RNA-encoding region of Epstein–Barr virus (EBV) correlate with EBV types A and B. Journal of Virology 63:983–986
    [Google Scholar]
  4. Burnette W.N. 1981; ‘Western Blotting’: electrophoretic transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112:195–203
    [Google Scholar]
  5. Countryman J., Jenson H., Seibl R., Wolf H., Miller G. 1987; Polymorphic proteins encoded within BZLF1 of defective and standard Epstein–Barr viruses disrupt latency. Journal of Virology 61:3672–3679
    [Google Scholar]
  6. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. 1984; U2region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proceedings of the National Academy of Sciences, USA 81:7632–7636
    [Google Scholar]
  7. Gutierrez M. I., Bhatia K., Magrath I. 1993; Replicative viral DNA in Epstein–Barr virus associated Burkitt’s lymphoma biopsies. Leukemia Research 17:285–289
    [Google Scholar]
  8. Henle G., Henle W. 1966; Immunofluorescence in cells derived from Burkitt’s lymphoma. Journal of Bacteriology 91:1248–1256
    [Google Scholar]
  9. Henle W., Henle G., Zajac B. A., Pearson G., Waubke R., Scriba M. 1970; Differential reactivity of human serums with early antigens induced by Epstein–Barr virus. Science 169:188–190
    [Google Scholar]
  10. Jenson H. B., Miller G. 1987; Sequences of the Epstein–Barr Virus (EBV) large internal repeat form the center of a 16-kilobase-pair palindrome of EBV (P3HR-1) heterogeneous DNA. Journal of Virology 61:1495–1506
    [Google Scholar]
  11. Kyaw M. T., Hurren L., Evens L., Moss D. J., Cooper D. A., Benson E., Sculley T. B. 1992; Expression of B-type Epstein–Barr virus inHIV-infected patients and cardiac transplant recipients. AIDS Research 8:1869–1874
    [Google Scholar]
  12. Luka J., Kallin B., Klein G. 1979; Induction of the Epstein–Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–231
    [Google Scholar]
  13. Miller G., Lipman M. 1973; Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proceedings of the National Academy of Sciences, USA 70:190–194
    [Google Scholar]
  14. Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. 1988; Cytotoxic T-cell clones discriminate between A- and B-type Epstein–Barr virus transformants. Nature 331:719–721
    [Google Scholar]
  15. Patton D. F., Shirley P., Raab-Traub N., Resnick L., Sixbey J. W. 1990; Defective viral DNA in Epstein–Barr virus-associated oral hairy leukoplakia. Journal of Virology 64:397–400
    [Google Scholar]
  16. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  17. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins. A probable transcriptional initiation site. Proceedings of the National Academy of Sciences, USA 83:5096–5100
    [Google Scholar]
  18. Sample J., Young L., Martin B., Chatman T., Kieff E. 1990; Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B and EBNA-3C genes. Journal of Virology 64:4084–4092
    [Google Scholar]
  19. Sculley T. B., Moss D. J., Hazelton R. A., Pope J. H. 1987; Detection of Epstein–Barr virus strain variants in lymphoblastoid cell lines ‘spontaneously’ derived from patients with rheumatoid arthritis, infectious mononucleosis and normal controls. Journal of General Virology 68:2069–2078
    [Google Scholar]
  20. Sculley T. B., Cross S. M., Borrow P., Cooper D. A. 1988; Prevalence of antibodies to Epstein–Barr virus nuclear antigen 2B in persons infected with the human immunodeficiency virus. Journal of Infectious Diseases 158:186–192
    [Google Scholar]
  21. Sculley T. B., Apolloni A., Stumm R., Moss D. J., Mueller-Lantczh N., Misko I. S., Cooper D. A. 1989; Expression of Epstein–Barr virus nuclear antigens 3, 4 and 6 are altered in cell lines containing B-type virus. Virology 171:401–408
    [Google Scholar]
  22. Sculley T. B., Apolloni A., Hurren L., Moss D. J., Cooper D. A. 1990; Coinfection with A- and B-type Epstein–Barr virus in human immunodeficiency virus-positive subjects. Journal of Infectious Diseases 162:643–648
    [Google Scholar]
  23. Serio T. R., Angeloni A., Kolman J. L., Gradoville L., Sun R., Katz D. A., Van Grunsven W., Middeldorp J., Miller G. 1996; Two 21-kilodalton components of the Epstein–Barr virus capsid antigen complex and their relationship to ZEBRA-associated protein p21 (ZAP21). Journal of Virology 70:8047–8054
    [Google Scholar]
  24. Sixbey J. W., Shirley P., Chesney P. J., Buntin D. M., Resnick L. 1989; Detection of a second widespread strain of Epstein–Barr virus. Lancet ii:761–765
    [Google Scholar]
  25. Walling D. M., Edmiston S. N., Sixbey J. W., Abdel-Hamid M., Resnick L., Raab-Traub N. 1992; Coinfection with multiple strains of the Epstein–Barr virus in human immunodeficiency virus-associated hairy leukoplakia. Proceedings of the National Academy of Sciences, USA 89:6560–6564
    [Google Scholar]
  26. Young L. S., Yao Q. Y., Rooney C. M., Sculley T. B., Moss D. J., Rupani H., Laux G., Bornkamm G. W., Rickinson A. B. 1987; New type B isolates of Epstein–Barr virus from Burkitt’s lymphoma and from normal individuals in endemic areas. Journal of General Virology 68:2853–2862
    [Google Scholar]
  27. Zimber U., Aldinger H. K., Lenoir G. M., Vuillaume M., Knebel-Doerberitz M. G., Laux G., Desgranges C., Wittman P., Bornkamm G. W. 1986; Geographical prevalence of two types of Epstein–Barr virus. Virology 154:56–66
    [Google Scholar]
  28. Zur Hausen H., O’Neill F. J., Freese U. K., Hecker E. 1978; Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272:373–375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-2-441
Loading
/content/journal/jgv/10.1099/0022-1317-80-2-441
Loading

Data & Media loading...

Most cited Most Cited RSS feed