Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. Free

Abstract

To investigate whether there is an association between local or systemic IgG and IgA responses against human papillomavirus (HPV) type 16 virus-like particles (VLP) containing L1 and L2 and the possible influence of these responses on clearance of HPV-16 and its associated lesions, cervical mucus samples from 125 patients and plasma samples from 100 patients, all participating in a non-intervention cohort study of women with abnormal cytology, were analysed. The results show that local IgG and IgA HPV-16 VLP-specific antibodies do not correlate with virus clearance. However, systemic IgG responses were more frequently detected in patients with a persistent infection (11/24) compared with patients with cleared HPV-16 infections (3/28, P = 0.006). Furthermore, the ultimate development of high-grade lesions was associated with systemic VLP-specific IgG reactivity (P = 0.026). By contrast, systemic IgA responses were correlated with virus clearance (7/28 clearance compared with 1/24 persistence patients, P = 0.06). This correlation was statistically significant when only those clearance patients who tested HPV-16 DNA-positive at more than one visit were included in the analysis (5/11 compared with 1/24, P = 0.007). As these systemic IgA responses were not accompanied by local IgA responses, the systemic IgA responses in HPV-16 clearance patients are suggested to be a by-product of a successful cellular immune response induced at the local lymph nodes, mediated by cytokines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-2-409
1999-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/2/0800409a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-2-409&mimeType=html&fmt=ahah

References

  1. Bosch F. X., Manos M. M., Munoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. 1995; Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. Journal of the National Cancer Institute 87:796–802
    [Google Scholar]
  2. Braun L., Durst M., Mikumo R., Gruppuso P. 1990; Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor β 1. Cancer Research 50:7324–7332
    [Google Scholar]
  3. de Gruijl T. D., Bontkes H. J., Walboomers J. M. M., Schiller J. T., Stukart M. J., Groot B. J., Chabaud M. M. R., Remmink A. J., Verheijen R. H. M., Helmerhorst T. J. M., Meijer C. J. L. M., Scheper R. J. 1997; Immunoglobulin G responses against human papillomavirus type 16 virus-like particles in a prospective nonintervention cohort study of women with cervical intraepithelial neoplasia. Journal of the National Cancer Institute 89:630–638
    [Google Scholar]
  4. de Gruijl T. D., Bontkes H. J., Walboomers J. M. M., Coursaget P., Stukart M. J., Dupuy C., Kueter E., Verheijen R. H. M., Helmerhorst T. J. M., Duggan-Keen M. F., Stern P. L., Meijer C. J. L. M., Scheper R. J. 1999; Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. I. Differential T-helper and IgG responses in relation to HPV infection and disease outcome. Journal of General Virology 80:399–408
    [Google Scholar]
  5. de Roda Husman A.-M., Walboomers J. M. M., van den Brule A. J. C., Meijer C. J. L. M., Snijders P. J. F. 1995; The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. Journal of General Virology 76:1057–1062
    [Google Scholar]
  6. Dillner J., Kallings I., Brihmer C., Sikström B., Koskela P., Lehtinen M., Schiller J. T., Sapp M., Mardh P. A. 1996; Seropositivities to human papillomavirus types 16, 18, or 33 capsids and to Chlamydia trachomatis are markers of sexual behavior. Journal of Infectious Diseases 173:1394–1398
    [Google Scholar]
  7. Elfgren K., Bistoletti P., Dillner L., Walboomers J. M., Meijer C. J., Dillner J. 1996; Conization for cervical intraepithelial neoplasia is followed by disappearance of human papillomavirus deoxyribonucleic acid and a decline in serum and cervical mucus antibodies against human papillomavirus antigens. American Journal of Obstetrics and Gynecology 174:937–942
    [Google Scholar]
  8. Halpert R., Fruchter R. G., Sedlis A., Butt K., Boyce J. G., Sillman F. H. 1986; Human papillomavirus and lower genital neoplasia in renal transplant patients. Obstetrics and Gynecology 68:251–258
    [Google Scholar]
  9. Ho L., Terry G., Mansell B., Butler B., Singer A. 1994; Detection of DNA and E7 transcripts of human papillomavirus types 16, 18, 31 and 33, TGF-β and GM-CSF transcripts in cervical cancers and precancers. Archives of Virology 139:79–85
    [Google Scholar]
  10. IARC 1995 Monographs on the Evaluation of the Carcinogenic Risks to Humans vol 64 The Human Papillomavirus, Lyon; International Agency for Research on Cancer:
    [Google Scholar]
  11. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. 1993; Efficient self-assembly of human papillomavirus type 16 Ll and L1-L2 into virus-like particles. Journal of Virology 67:6929–6936
    [Google Scholar]
  12. Kirnbauer R., Hubbert N. L., Wheeler C. M., Becker T. M., Lowy D. R., Schiller J. T. 1994; A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. Journal of the National Cancer Institute 86:494–499
    [Google Scholar]
  13. Laga M., Icenogle J. P., Marsella R., Manoka A. T., Nzila N., Ryder R. W., Vermund S. H., Heyward W. L., Nelson A., Reeve W. C. 1992; Genital papillomavirus infection and cervical dysplasia: opportunistic complications of HIV infection. International Journal of Cancer 48:682–688
    [Google Scholar]
  14. Melkert P. W., Hopman E., van den Brule A. J., Risse E. K., van Diest P. J., Bleker O. P., Helmerhorst T., Schipper M. E., Meijer C. J. L. M., Walboomers J. M. M. 1993; Prevalence of HPV in cytomorphologically normal cervical smears, as determined by the polymerase chain reaction, is age-dependent. International Journal of Cancer 53:919–923
    [Google Scholar]
  15. Remmink A. J., Walboomers J. M. M., Helmerhorst T. J. M., Voorhorst F. J., Rozendaal L., Risse E. K. J., Meijer C. J. L. M., Kenemans P. 1995; The presence of persistent high-risk HPV genotypes in dysplastic cervical lesions is associated with progressive disease: natural history up to 36 months. International Journal of Cancer 61:306–311
    [Google Scholar]
  16. Roden R. B. S., Hubbert N. L., Kirnbauer R., Christensen N. D., Lowy D. R., Schiller J. T. 1996; Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. Journal of Virology 70:3298–3301
    [Google Scholar]
  17. Sasagawa T., Yamazaki H., Dong Y. Z., Satake S., Tateno M., Inoue M. 1998; Immunoglobulin-A and -G responses against viruslike particles (VLP) of human papillomavirus type 16 in women with cervical cancer and cervical intra-epithelial lesions. International Journal of Cancer 75:529–535
    [Google Scholar]
  18. Schröder J. M. 1995; Cytokine networks in the skin. Journal of Investigative Dermatology 105:20S–24S
    [Google Scholar]
  19. Stavnezer J. 1995; Regulation of antibody production and class switching by TGF-β . Journal of Immunology 155:1647–1651
    [Google Scholar]
  20. Strickler H. D., Schiffman M. H., Eklund C., Glass A. G., Scott D. R., Sherman M. E., Wacholder S., Kurman R. J., Manos M. M., Schiller J. T., Dillner J. 1997; Evidence for at least two distinct groups of humoral immune reactions to papillomavirus antigens in women with squamous intraepithelial lesions. Cancer Epidemiology, Biomarkers & Prevention 6:183–188
    [Google Scholar]
  21. Van Ginkel F. W., VanCott J. L., Kiyono H., McGhee J. R. 1997; Mucosal immunity to human papillomavirus in the female reproductive tract. Papillomavirus Report 8:1–10
    [Google Scholar]
  22. Wang Z., Hansson B. G., Forslund O., Dillner L., Sapp M., Schiller J. T., Bjerre B., Dillner J. 1996; Cervical mucus antibodies against human papillomavirus type 16, 18, and 33 capsids in relation to presence of viral DNA. Journal of Clinical Microbiology 34:3056–3062
    [Google Scholar]
  23. Wideroff L., Schiffman M. H., Nonnenmacher B., Hubbert N. L., Kirnbauer R., Greer C. E., Lowy D. R., Lorincz A. T., Manos M. M., Glass A. G., Scott D. R., Sherman M. E., Kurman R. J., Buckland J., Larone R. E., Schiller J. 1995; Evaluation of seroreactivity to human papillomavirus type 16 virus-like particles in an incident case-control study of cervical neoplasia. Journal of Infectious Diseases 172:1425–1430
    [Google Scholar]
  24. Woodworth C. D., Lichti U., Simpson S., Evans C. H., DiPaolo J. A. 1992; Leukoregulin and gamma-interferon inhibit human papillomavirus type 16 gene transcription in human papillomavirus-immortalized human cervical cells. Cancer Research 52:456–463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-2-409
Loading
/content/journal/jgv/10.1099/0022-1317-80-2-409
Loading

Data & Media loading...

Most cited Most Cited RSS feed